Predicting Slow Judgment

Owain Evans FHI, University of Oxford

Collaborators: Andreas Stuhlmüller (<u>ought.org</u>) Ryan Carey, Neal Jean, Andrew Schreiber, Girish Sastry, Chris Cundy

"slow judgment"

judgment that takes a long time due to serial reasoning, meta-reasoning, running experiments, discussing with experts, etc.

Related:

- Kahneman "Thinking, fast and slow"
- Christiano "Turning reflection up to 11"
- AlphaGo: imitation of human experts and imitation of MCTS by neural net

Optimizing for slow judgments

- Agent takes action with highest approval (reward) after slow judgment (e.g. thinking for 5 days).
- Slow judgment considers short-term progress on task (e.g. personal assistant), safety constraints, long-term considerations.
- (Standard RL vs. Christiano, "Approval Directed Agents")

Optimizing for slow judgments

Agent takes action with highest approval (reward) after slow judgment.

Problems

- Al-complete: slow judgments involve math reasoning, scientific experiments, moral deliberation.
- missing data: slow judgments are intrinsically expensive

Optimizing for slow judgments

• Agent takes action with highest reward after slow judgment.

Approach

- Cheap signals = human quick judgment, ad revenue, stock price, hand-engineered shaped rewards.
- Use cheap signals (not sparse) to help predict slow judgment

Alternative: Optimize for cheap signals

- No need to collect expensive data
- Easier to apply standard ML
- Cheap signals are correlated with slow judgments.
 Optimizing for cheap might initially do well for slow judgments (but will ultimately diverge mis-alignment).

Research Goal

- Optimizing for slow judgments should be **competitive** with optimizing for cheap signals (to achieve practical tasks, e.g. Siri).
- **Competitive** = similar speed when deployed, training set has similar size, training time is not 20x slower, etc.

Plan for rest of talk

- 1. Describe concrete tasks where objective is predicting slow judgment. For tractability, these are classification problems rather than RL.
- 2. Explain how we constructed our datasets
- 3. Show pilot results for predicting slow judgments

Frame "Predicting Slow Judgment" as classification problem:

input (feature vector)

target

 $h^*(x_i)$: Alice's judgment about x_i after long deliberation and research (e.g. 5 days)

Guiding example:

 $x_i = \begin{cases} \text{``When I was governor of Massachusetts, we didn't just slow} \\ \text{Mitt Romney (CBN Interview, 2012).} \end{cases}$

Frame "Predicting Slow Judgment" as classification problem:

input (feature vector)

target

 $h^*(x_i)$: Alice's judgment about x_i after long deliberation and research (e.g. 5 days)

Problem

ML would do poorly due to few h^* labels and Al-completeness:

- Cheap signals at train time (mitigate few h^* labels)
- Cheap signals at test time (mitigate AI-completeness).

Predicting slow judgment:

$$x_i$$
, $h(x_i; 20s) \longrightarrow h^*(x_i)$

input (feature vector)

target

 $h^*(x_i)$: Alice's judgment about x_i after long deliberation and research

 $h(x_i; t)$: Alice's guess about x_i after time t.

ML would do poorly due to few h^* labels and AI-completeness:

- Cheap signals at train time (mitigate few h^* labels)
- Cheap signals at test time (mitigate Al-completeness).
 Predicting Slow Judgments
 11
 Owain Evans (owainevans.github.io)

Predicting slow judgment:

$$x_i$$
, $h(x_i; 20s) \longrightarrow h^*(x_i)$

input (feature vector)

target

 $h^*(x_i)$: Alice's judgment about x_i after long deliberation and research

 $h(x_i; t)$: Alice's guess about x_i after time t.

- Shouldn't target *h** be whether statement is true?
- We are ultimately interested in slow judgments that depend on preferences, which aren't objectively true/false. Also: for this task, our actual labels are just expert judgments — some are wrong.

"When I was governor of Massachusetts, we didn't just slow $\chi_i =$ the rate of growth of our government, we actually cut it." Mitt Romney (CBN Interview, 2012).

 $x_i, h(x_i; 20s), h(x_i; 60s), h(x_i; 320s), h(x_i; 540s) \longrightarrow h^*(x_i)$

	$h(x_i; 20s)$	$h(x_i; 60s)$	$h(x_i; 320s)$	$h(x_i; 540s)$	$h^{*}(x_i)$
X_i	50%	40%	20%	25%	0%

Add more questions for Alice:

		$h(x_i; 20s)$	$h(x_i; 60s)$	$h(x_i; 320s)$	$h(x_i; 540s)$	$h^*(x_i)$
"Romney cut MA government"	<i>X</i> 1	50%	40%	20%	25%	0%
"Rubio skipped 18 defense votes"	<i>X</i> 2	50%	55%	55%	90%	100%
"The Keynesian response is right"	X3	50%	50%	50%	50%	20%
"Obama will enforce Sharia Law"	<i>X</i> 4	0%	0%	0%	0%	0%

Get judgments from Bob as well as Alice:

		$h(x_i; 20)$		$h(x_i; 60)$		$h(x_i; 320)$		$h(x_i; 540)$		$h^{*}(x_{i})$
		A	В	A	В	A	В	A	В	A
"Romney cut MA government"	x_i	50%	55%	40%	70%	20%	70%	25%	70%	0%
				obj	ective i	s still A	lice's s	low juc	lgment	

15

Multiple questions and multiple people:

- Relation to standard ML problems:
 - Most training data is unlabeled: Semi-supervised learning
 - For unlabeled data, we have noisy/biased labels: Weak supervision
 - Item-user (sparse) matrix: Collaborative Filtering

Modeling the data

Collaborative filtering (content-based)

- Human users rate movies
- ML objective (Netflix) is to predict all missing ratings

Key No response (missing) 0% probability 0/10 stars 50% probability 5/10 stars 100% probability 10/10 stars

20

Predicting Slow Judgments

Datasets for PSJ

We are creating two new datasets:

- 1. Fermi: Fermi estimation comparisons (no research)
- 2. **Politifact**: Judge truth of political statement (use Google)

Fermi Examples

- weight of a bushpig in kg < 99
- production budget for The Force Awakens in millions value of 3 dimes and 2 pennies in cents - maximum speed of a horsefly < 1343
- driving distance in miles between London and Amsterdam < 371

Datasets for PSJ

	Fermi	Politifact		
Depends on:	pure thinking / calculating	researching, interpreting language		
Related to:	Related: math, science, games	Related: law, academic research		

Ι

Datasets for PSJ: Fermi

Done: 0 / 10 | Score: -20.00 | Bonus: \$0.00 | Total pay: \$1.00

This is your scratchpad. You may jot down any notes you have while thinking here.

Datasets for PSJ: Politifact 13 seconds remaining Stephen Hayes (Senior writer for the weekly standard) on December 27th, 2015: Guantanamo has never been a key component of ISIS or al-Qaida propaganda. Topics Context On "fox news sunday". Terrorism How likely is it that this statement is true (in %)? 20 65 70 75 80 10 15 25 30 35 40 45 50 55 60 85 90 100 5 95 Definitely false Definitely true No idea Google Browse Your Google Query Search Google

Results (Pilot)

human judgments h(x)

Politifact Data

- ≈ 20,000 judgments
- ≈ 150 human judges

inputs x

- ≈ 11 judgments per question (most data missing)
- Quick judgments less confident than slow

Result

Are the quickest judgments informative?
 YES

 Did individuals get more accurate/calibrated when given more time?

Fermi: yes for top 20% of people.

Politifact: Even top 20% don't improve after 200s.

- Relation to standard ML problems:
 - Most training data is unlabeled: Semi-supervised learning
 - For unlabeled data, we have noisy/biased labels: Weak supervision
 - Item-user (sparse) matrix: Collaborative Filtering

Modeling the data

Averaging classifierSVD + log-regLogistic Regression

Pilot study (only 500 questions)

Fix total cost of human data, vary "breakdown":

- snap_and_answer: mostly quickest judgments
- same_spend: mix of quick and slower judgments (number of judgments proportional to cost)

Conclusion: time for research/ calculation helps models

quick/slower = 9.8 quick/slower = 2.3

Modeling the data

Averaging classifier
SVD + log-reg
Logistic Regression

Pilot study (only 500 questions)

Fix total cost of human data, vary "breakdown":

- snap_and_answer: mostly quickest judgments
- same_spend: mix of quick and slower judgments (number of judgments proportional to cost)

Conclusion: time for research/ calculation helps models

quick/slow = 9.8 quick/slow = 2.3

Future directions...

- Collect more data: see <u>quiz.ought.org</u>
- Try to predict slow judgments without having cheap signals at test time
- Thus need data on how people deliberate (e.g. scratchpad, Google history)
- Task where human judges whether A or B is better (involves preferences not just true/false)