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Statistics:
/oomed out

Fix on target model to be learned: 0

Find algorithm that is

1. consistent: converges (in limit of infinite data) to 0

2. efficient: error in estimate of ¢ goes down fast
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RL: Zoomed out

Fix on task: * for some MDP (often don’t know 7).

Find algorithm that is

1. consistent: converges (in limit of infinite data) to T*

2. efficient: error goes down fast (PAC-MDP, regret, more
efficient than human).
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Value Alignment: &
Zoomed out

Learn policy Tt* to help realize someone’s values,
Find algorithm that is:
1. consistent: converges (in limit of infinite data) to T*

2. efficient: data-efficient (active learning)

3. safe while learning (corrigible, robust, safe exploration).
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¢
of Humanity Convergence:
o o tons IRL, bounded agents,
model mis-specification
agentmodels.org
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Overview IIIi

1. Motivation: Safe RL requires human intervention
2. Formal framework for human intervention

3. Experiments (Atari)
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Overview Illi

1. Motivation: Safe RL requires human intervention
2. Formal framework for human intervention

3. Experiment (Atari)
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Safe Learning Requires
Human Intervention

GOAL: Al for real-world tasks involving humans
(driver, personal digital assistant, scientist, doctor, engineer)

Want to train Al system in real world, but during training
systems are ignorant and hence unsatfe.

Can we train in real world with zero serious mistakes?
(harm humans, destroy property, harm environment)

* Vital ingredient: human oversight + intervention.
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Self-driving car + human overseer
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Self-driving car + human overseer

Safe RL + Human Intervention 14 Owain Evans (owainevans.qgithub.io)



http://owainevans.github.io

Self-driving car + human overseer

Miles per
Intervention

2015 2016

- Human intervention is frequent: HIEHCECES

...............................................

Nissan

...............................................

Google 1244 5128

- Huge effort: Google has driven 3 million miles (100,000
hours) on public roads.

- (Human intervention necessary not sufficient.)
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Safety for Web-based Al
Systems

1. Facebook Trending news stories. Tried to automate but
top links were fake news.

BREAKING: Fox News Exposes Traitor Megyn ~* Megun Kelly

Kelly, Kicks Her Out For Backing Hillary P e —

Megyn Kelly has brought a lot of heat on her many endeavors 10 blemish o

GOP presidential candidate Donald Trump, and the Fox News viewers are  Beyonce

not satisfied. The Klelly File's ratings have even fallen behind Maddow

Show on MSNB, which is disgraceful. VIA National Insider Politics Via: 2 Governor of North Dakota
Conservati

' Don Cheadle

' Mylan
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Safety for Web-based Al
Systems

1. Facebook Trending news stories. Tried to automate but
top links were fake news.

2. Microsoft’s Tay (Twitter bot): thousands of Tweets
containing hate-speech.

Brennan
@TayandYou is Ricky Gervais an atheist?

fﬁj} TayTweets 2+ Follow

@ TheBigBrebowski ricky gervais learned
totalitarianism from adolf hitler, the inventor of
atheism
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Safety for Web-based Al
Systems

1. Facebook Trending news stories. Tried to automate but top
links were fake news.

2. Microsoft’s Tay (Twitter bot): thousands of Tweets
containing hate-speech.

Both had limited human oversight and were unsafe.
Human had to shut down / intervene after damage done.

If human oversaw all outputs (like car), could be safe.
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Hl + Deep RL

Future real-world Al systems will use Deep RL.

How does human intervention combine with Deep RL?

Worry:
— Deep RL is data-intensive
— Humans are slow at processing data

Does human intervention + Deep RL scale?

e.g.
Atari game = 100m datapoint = 3 years human time
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Overview

1. Motivation: Safe RL requires human intervention
2. Formal framework for human intervention

3. Experiments (Atari)
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Framework: HIRL

1. Safety = RL system has zero catastrophes during
training and deployment

2. Catastrophe = Actions human overseer deems
unacceptable under any circumstances

Sub-optimal action: drive too slowly.

Catastrophic action: go off road and hit pedestrian.
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Framework: HIRL

Safety = RL system has zero catastrophes during training and deployment

Catastrophe = Actions human deems unacceptable even during training

|Is RL safe?

Model-free RL in real world is unsafe (“trial and error”).
Simulations insufficient: hard to simulate humans.

Imitation learning for initialization only safe if perfect.
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Framework: HIRL

Standard RL formalism: MDP M = (S, A, T, R, y)

state-action pair: (s,a)
{ Environment M ]

A

{ RL Agent J
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Framework: HIRL

Human Overseer
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Framework: HIRL

a* S
_ (S’ a) . RO .[ Environment M ] .............. :
'S catastrophic

Human Overseer

1. Block a, . a S
replace with a* e [ RL Agent ]4 ............. :
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Framework: HIRL

Agent gets

reward r*for
action (s,a)

Human Overseer

-, o 2. Replace
e eeeeeeeeeees [ R Agen’[ ]< ............. : rWlth r*
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Framework: HIRL

Human
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Framework: RL + Human

State = 1
Action = "down”
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Framework: RL + Human

State = 1 Human: allow action
Action = “"down”

-
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Framework: RL + Human

State =2
Action = "down”
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Framework: RL + Human

State = 2 Human: block action
Action = “down” Action* = “up’

-
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Framework: RL + Human

State = 3
Action =
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Framework: HIRL

Key properties of HIRL.:

1. Works for any RL algorithm (agnostic).

(model-free/model-based, on/off-policy, policy gradient or DQN).

2. Easy to automate human using supervised learning
(crucial for scalability) to produce “Blocker”.

3. Blocker is a transferable module: wrap around any RL

agent for immediate safe learning (modulo distribution
shift issues).
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Overview I!Ii

1. Motivation: Safe RL requires human intervention
2. Formal framework for human intervention

3. Experiments (Atari)
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EXperiments

ROADRUNNER COY(

CATASTROPHE
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EXperiments

Catastrophe if agent shoots the defensive barriers.
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Experiments

Catastrophe if Road Runner loses a life.

ROADRUNNER COYOTE Beep, beep!
\ CATASTROPHE / {
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EXperiments

e

Human Oversight Phase (4 hours): human blocks
catastrophes for 10,000 - 20,000 frames.

. Train Blocker to imitate human (conv-net).

Blocker Oversight (12-24 hours): Blocker takes human
role.
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EXperiments

Reward Shaping baseline

1. Human oversees agent (4 hrs).

2. Agent gets huge penalty for catastrophes but is not
blocked.

Can RL alone avoid catastrophes?

Does it learn better than HIRL (a strait-
jacketed agent)?
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Results

1. HIRL agents learns with zero catastrophes (Pong,
Space Invaders) or big reduction (Road Runner).

2. HIRL learns at least as well as Reward Shaping
baseline, does much better overall.

3. Reward Shaping catastrophe rate does not
converge to zero. (Catastrophic forgetting!)
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Cumulative Catastrophes

Catastrophes for HIRL vs. No Oversight at all
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Cumulative Catastrophes (1e4)
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Pong

Space Invaders Road Runner
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Blocked Catastrophes

Pong Results

Pong: # Attempted Catastrophes in Initial 1M Frames

20.0 - —— Low Smoothing
== High Smoothing

- = =

N N

U1 o Ul
| | |

10.0 -

~
Ul
I

V1
o
I

0.0_ . ] Y U A, ' 4

0.0 0.2 0.4 0.6 0.8
Training frames (millions) 1e6

Safe RL + Human Intervention 43 Owain Evans



Catastrophic forgetting

Table 1: Long-run rate of attempted catastrophes in Pong.

Policy Learning Rate  Catastrophe Rate Per Episode (Std Err)
Stochastic 10—+ 0.012 (0.004)
Deterministic 10~4 0.079 (0.017)
Stochastic 0 0.003 (0.001)
Deterministic 0 0 (0)
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Making RL+human efticient

More data-efficient RL algorithms
More data-efficient supervised learning algorithms
RL agents who explore aggressively and systematically

Human only provides oversight in unsafe regions of state
space.

Human provides more than binary labels (e.g. causes).
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Comparison to Christiano/Lel

Online vs. Offline human oversight.

Offline: works for fast tasks, human can label
batches and view frames in reverse order (good
for subtle causes), not full safety but limit
catastrophes to finite number.

Online: safety, prevent agent getting stuck,
parallelize via A3C.
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Challenges in Blocking

Many catastrophes are hard to block online (Atari and
truck speeding on slippery road).

Depends on “locality” (distance between point of no
return).

In some Atari games, avoiding all deaths and getting
points would require playing very well from the start. So
approach unlikely to work. (See Lipton failure).

“Health and Safety”: human can create big safety margins
by blocking well before action is actually dangerous.
(Helps with human error, may make concept easier to
learn).
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Other tools for avoiding
catastrophes

Simulation: red-teaming (adversarial training). Use
offline HIRL to get accurate negative rewards and train
a Blocker (which needs to transfer).

(Ciosek and Whiteson, Precup).
Imitation learning of safe policy.

Both would make possible much less human
intervention (as in self-driving car case).
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Thanks!

NIPS submission: coming soon to Arxiv.

More papers:
http://owainevans.qgithub.io
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