
Learning(the(Preferences(of(
Ignorant,(Inconsistent(Agents

Owain Evans)(Oxford),"Andreas"Stuhlmueller (Stanford),"
Noah"Goodman"(Stanford)

1.(Motivation(for(learning(human(preferences

• Scientific"(economics,"psychology):"how"do"people"value"work"vs."
leisure,"short@term"vs."long@term,"country"vs."friends"&"family?

• Machine"learning"(applications):"recommendation"(movie,"job,"
dating),"create"tailored"content."

• Machine"learning"(long@term"goal):"the"more"systems"understandour"
preferences,"the"more"they"can"help"us"make"high)stakes)decisions"in"
novel circumstances.

2.(Learning(preferences(with(IRL

Inverse)Reinforcement)Learning)(AI))/)Structural)Estimation)(Econ):
• Unsupervised"learning,"assumed"model"is"MDP,"POMDP,"RL.

• Learn"from"sequences"of"choices"in"complex"environments"(cf."Netflix)

• Learn"utility/reward"function"not"policy:"enduring"cause"not"contingent"
effects."

• People"act"on"their"preferences"without"ability"to"report"them"
quantitatively"(driving"skill,"detailed"vacation"plan)"

3.(The(problem(of(systematic(error

• IRL:"infer"preferences"from"observed"actions"…"assuming"human"fits"
(MDP/POMDP)"model"up"to"random"(softmax)"errors.

• But"human"make"systematic)errors!"Person"smokes"every"day"but"
regrets"it."

• Behavioral"economics"(hyperbolic"discounting,"Prospect"Theory)

• Bounded"cognition"(forgetting,"limited"computational"ability,"etc.)

4.(Learning(from(ignorant,(inconsistent(agents

Our"approach:"

1. build"flexible"generative"models"to"capture"a"range"of"biases"and"
cognitive"bounds"(while"maintaining"tractability)

2. jointly"infer"biases (or"lack"thereof)"and"preferences from"behavior

3. if"successful,"can"help"humans"overcome"biases

5.(Human(bias:(Time(inconsistency

• Intuition:"tonight"you"want"to"rise"early"but"tomorrow"you"want"to"
sleep"in.

• Most"prominent"bias:"addiction,"procrastination,"impulsiveness,"will@
power"/"pre@commitment.

• Formally,"any"non@exponential"discounting"implies"time@inconsistency."

5.(Human(bias:(Time(inconsistency

Hyperbolic)discounting

Discount"factor"=""1/(1+kt)

At"t=0,"you"prefer" $80"at"t=8"
to"$70"at"t=7"(curve"shallow)"

At"t=7,"you"re@evaluate" and"
prefer"$70"now"to"$80"
tomorrow"(curve"steep)."

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Hyperbolic"discounting

Exponential"discounting

U0@–U1"="0.5
U1/U0"="0.5

U0–U1"="0.67
U1/U0"="0.33
Curve"is"STEEP

Curve"is"FLAT
U5—U4"="0.02
U5/U4"="0.81

U5—U4"="0.03
U5/U4"="0.5

5.(Model(for(biased(agent

MDP)model:

MDP)+)Hyberbolic discounting)(variable"d for"“delay”"measures"how"
far"in"the"future"the"action"awould"take"place):

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

6.(Goal(for(examples(and(experiments

• Show"that"ignoring"biases"(assuming"optimality)"leads"to"mistakes"in"
learning"preferences

• Mistakes"occur"in"simple,"uncontrived,"everyday"scenarios."

Donut
North

Donut"
South

Vegetarian" Salad"Bar

Donut"Chain"Store

Noodle"Shop

Bob’s"
starting"
point

Bob"eats"
here

Donut
North

Donut"
South

Vegetarian" Salad"Bar

Donut"Chain"Store

Noodle"Shop

Bob’s"
starting"
point

Bob"eats"
here

5.(Model(for(biased(agent(J NAIVE

MDP)model:

MDP)+)Hyberbolic discounting)(variable"d for"“delay”"measures"how"
far"in"the"future"the"action"awould"take"place):

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

5.(Model(for(biased(agent(J SOPHISTICATED

MDP)model:

MDP)+)Hyberbolic discounting)(variable"d for"“delay”"measures"how"
far"in"the"future"the"action"awould"take"place):

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

is slightly closer than D2 to her starting point, or (if utility
for the Vegetarian Cafe is sufficiently high) she would cor-
rectly predict that she will be able to resist the temptation.

Formal model definition
We first define an agent with full knowledge and no time in-
consistency,2 and then generalize to agents that deviate from
optimality.

We will refer to states s 2 S, actions a 2 A, a determinis-
tic utility function U : S⇥A ! R, a stochastic action choice
function C : S ! A, and a stochastic state transition func-
tion T : S ⇥ A ! S. To refer to the probability that C(s)

returns a, we use C(a; s).

Optimal agent: full knowledge, no discounting Like all
agents we consider, this agent chooses actions in proportion
to exponentiated expected utility (softmax):

C(a; s) / e

↵EU
s

[a]

The noise parameter ↵ modulates between random choice
(↵ = 0) and perfect maximization (↵ = 1). Expected util-
ity depends on both current and future utility:

EU

s

[a] = U(s, a) + E
s

0
,a

0
[EU

s

0
[a

0
]]

with s

0 ⇠ T (s, a) and a

0 ⇠ C(s

0
). Note that expected future

utility recursively depends on C—that is, on what the agent
assumes about how it will make future choices.

Time-inconsistent agent Now the agent’s choice and ex-
pected utility function are parameterized by a delay d, which
together with a constant k controls how much to discount fu-
ture utility:

C(a; s, d) / e

↵EU
s,d

[a]

EU

s,d

[a] =

1

1 + kd

U(s, a) + E
s

0
,a

0
[EU

s

0
,d+1 [a

0
]]

with s

0 ⇠ T (s, a). For the Naive agent, a0 ⇠ C(s

0
, d + 1),

whereas for the Sophisticated agent, a0 ⇠ C(s

0
, 0). When

we compute what the agent actually does in state s, we set
d to 0. As a consequence, only the Sophisticated agent cor-
rectly predicts its future actions.3 An implementation of the
Naive agent as a probabilistic program is shown in Figure 2.

Time-inconsistent agent with uncertainty We now relax
the assumption that the agent knows the true world state.
Instead, we use a distribution p(s) to represent the agent’s
belief about which state holds. Using a likelihood function
p(o|s), the agent can update this belief:

p(s|o) / p(s)p(o|s)
The agent’s choice and expected utility functions are now
parameterized by the distribution p(s) and the current ob-
servation o:

C(a; p(s), o, d) / e

↵EU
p(s),o,d[a]

2This is the kind of agent assumed in the standard setup of an
MDP (Russell and Norvig 1995)

3This foresight allows the Sophisticated agent to avoid tempting
states when possible. If such states are unavoidable, the Sophisti-
cated agent will choose inconsistently.

var agent = function(state, delay){

return Marginal(

function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay)

factor(alpha

*

eu)

return action

})

}

var expUtility = function(state, action, delay){

if (isFinal(state)){

return 0

} else {

var u = 1/(1 + k

*

delay)

*

utility(state, action)

return u + Expectation(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1))

return expUtility(nextState, nextAction, delay+1)

})

}

}

Figure 2: We specify agents’ decision-making processes as
probabilistic programs. This makes it easy to encode ar-
bitrary biases and decision-making constraints. When au-
tomated inference procedures invert such programs to in-
fer utilities from choices, these constraints are automati-
cally taken into account. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about fu-
ture expected utility includes a (potentially biased) model of
its own decision-making.

To compute expected utility, we additionally take the expec-
tation over states. Now EU

p(s),o,d [a] is defined as:

E
s⇠p(s|o)


1

1 + kd

U(s, a) + E
s

0
,o

0
,a

0

⇥
EU

p(s|o),o0,d+1 [a
0
]

⇤�

with s

0 ⇠ T (s, a), o0 ⇠ p(o|s0) and a

0 ⇠ C(p(s|o), o0, d +

1) (for the Naive agent) or a

0 ⇠ C(p(s|o), o0, 0) (for the
Sophisticated agent).

Inferring preferences We define a space of possible
agents based on the dimensions described above (utility
function U , prior p(s), discount parameter k, noise param-
eter ↵). We additionally let Y be a variable for the agent’s
type, which fixes whether the agent discounts at all, and if
so, whether the agent is Naive or Sophisticated. So, an agent
is defined by a tuple ✓

:

= (p(s), U, Y, k,↵), and we per-
form inference over this space given observed actions. The
posterior joint distribution on agents conditioned on action
sequence a0:T is:

P (✓|a0:T) / P (a0:T |✓)P (✓) (1)
The likelihood function P (a0:T |✓) is given by the multi-

step generalization of the choice function C corresponding
to ✓. For the prior P (✓), we use independent uniform pri-
ors on bounded intervals for each of the components. In the
following, “the model” refers to the generative process that

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0

Utility for Donut

U
til

ity
 fo

r V
eg

et
ar

ia
n

Naive

0

1

2

4 8 12 16

Utility for Vegetarian

D
is

co
un

t s
tre

ng
th

 (k
)

Sophisticated

0.0067

0.0183

0.0498

0.1353

0.3679

1.0000

2 3 4 5 6

Utility for Noodle

P(
"N

oo
dl

e
sh

op
 o

pe
n"

)

Sophisticated

Figure 3: Given data cor-
responding to Figure 1,
the model infers a joint
posterior distribution
on preferences, beliefs
and other agent prop-
erties (such as discount
strength) that reveals
relations between differ-
ent possible inferences
from the data. The darker
a cell, the higher its
posterior probability.

involves a prior on agents and a likelihood for choices given
an agent.

Agents as probabilistic programs
We implemented the model described above in the prob-
abilistic programming language WebPPL (Goodman and
Stuhlmüller 2014). WebPPL provides automated inference
over functional programs that involve recursion. This means
that we can directly translate the recursions above into pro-
grams that represent an agent and the world simulation used
for expected utility calculations. All of the agents above can
be captured in a succinct functional program that can easily
be extended to capture other kinds of sub-optimal planning.
Figure 2 shows a simplified example (including hyperbolic
discounting but not uncertainty over state).

For the Bayesian inference corresponding to Equation 1
we use a discrete grid approximation for the continuous vari-
ables (i.e. for U , p(s), k and ↵) and perform exact inference
using enumeration with dynamic programming.

Model inferences
We now demonstrate that the model described above can in-
fer preferences, false beliefs and time inconsistency jointly
from simple action sequences similar to those that occur fre-
quently in daily life. We later validate this intuition in our ex-
periments, where we show that human subjects make infer-
ences about the agent that are similar to those of our model.

Example 1: Inference with full knowledge We have pre-
viously seen how modeling agents as Naive and Sophisti-
cated might predict the action sequences shown in Figures

1a and 1b respectively. We now consider the inference prob-
lem. Given that these sequences are observed, what can be
inferred about the agent? We assume for now that the agent
has accurate beliefs about the restaurants and that the two
Donut Stores D1 and D2 are identical (with D1 closer to the
starting point).4 We model each restaurant as having an im-
mediate utility (received on arriving at the restaurant) and a
delayed utility (received one time-step after). This interacts
with hyperbolic discounting, allowing the model to repre-
sent options that are especially “tempting” when they can be
obtained with a short delay.

For the Naive episode (Figure 1a) our model infers that ei-
ther softmax noise is very high or that the agent is Naive (as
explained for Alice above). If the agent is Naive, the utility
of the Vegetarian Cafe must be higher than the Donut Store
(otherwise, the agent wouldn’t have attempted to go to the
Cafe), but not too much higher (or the agent wouldn’t give
in to temptation, which it in fact does). This relationship is
exhibited in Figure 3 (top left), which shows the model pos-
terior for the utilities of the Donut Store and Vegetarian Cafe
(holding fixed the other agent components Y , k, and ↵).

Example 2: Inference with uncertainty In realistic set-
tings, people do not have full knowledge of all facts rele-
vant to their choices. Moreover, an algorithm inferring pref-
erences will itself be uncertain about the agent’s uncer-
tainty. What can the model infer if it doesn’t assume that
the agent has full knowledge? Consider the Sophisticated
episode (Figure 1b). Suppose that the Noodle Shop is closed,
and that the agent may or may not know about this. This cre-
ates another possible inference, in addition to Sophisticated
avoidance of temptation and high noise: The agent might
prefer the Noodle Shop and might not know that it is closed.
This class of inferences is shown in Figure 3 (bottom): When
the agent has a strong prior belief that the shop is open, the
observations are most plausible if the agent also assigns high
utility to the Noodle Shop (since only then will the agent at-
tempt to go there). If the agent does not believe that the shop
is open, the Noodle Shop’s utility does not matter—the ob-
servations have the same plausibility either way.

In addition, the model can make inferences about the
agent’s discounting behavior (Figure 3 right): When utility
for the Vegetarian Cafe is low, the model can’t explain the
data well regardless of discount rate k (since, in this case,
the agent would just go to the Donut Store directly). The
data is best explained when utility for the Vegetarian Cafe
and discount rate are in balance—since, if the utility is very
high relative to k, the agent could have gone directly to the
Vegetarian Cafe, without danger of giving in to the Donut
Store’s temptation.

Example 3: Inference from multiple episodes Hyper-
bolic discounting leads to choices that differ systematically
from those of a rational agent with identical preferences. A
time-inconsistent agent might choose one restaurant more
often than another, even if the latter restaurant provides more

4In Experiment 2, we allow the utilities for D1 and D2 to be
different. See row 3 of Figure 6 and the “Preference” entry for So-
phisticated in Figure 7.

6.(Model(for(biases(agent:(Procrastination

6.(Model(for(biased(agent:(Procrastination

●

●

●

●
● ● ● ●

0.2

0.4

0.6

0:
Noth

ing

1:
Prom

ise
d

2:
Prom

ise
d

3:
Prom

ise
d

4:
Prom

ise
d

5:
Prom

ise
d

6:
Prom

ise
d

Day and state

In
fe

rre
d

ut
ilit

y
of

 h
el

pi
ng

 fr
ie

nd

●

Optimal agent
Potentially discounting

Discounting

(a)

● ● ●
●

●

●

●

125

150

175

200

0.001 0.010 0.100

Risk probability
In

fe
rre

d
ut

ilit
y

of
 ta

lle
r m

ou
nt

ai
n

●

Optimal agent
Monte Carlo

Monte Carlo

(b)

●

●

●
●

●
●

3

4

5

0 1 2 3 4 5

Trials where agent chooses A

In
fe

rre
d

ut
ilit

y
of

 re
st

au
ra

nt
 A

●

Optimal agent
Potentially myopic

Myopic planning

(c)

●

● ● ●

0.9

1.2

1.5

1.8

0 1 2 3

Trials where agent chooses A

In
fe

rre
d

ut
ilit

y
of

 re
st

au
ra

nt
 A

●

Optimal agent
Potentially bounded VOI

Bounded VOI

(d)

Figure 2: Examples of inferences about utilities for optimal and bounded agents

the comments has negative utility to you because it is tedious and will take a whole
day. The paper will be submitted in T days and comments are more helpful earlier.

There are two decisions to make. First, you decide whether to promise your friend that you will offer
prompt comments, i.e., move from “do nothing” to “promise” node in Figure 3. After you promise,
they send you the paper and the next day you decide whether to “do work” (which results in the
“help friend” outcome) or to stay in the “promise” state. There is no cost to staying in “do Nothing”,
but there is a tiny cost of �✏ for every day in “promise”. Doing the work has a one-time cost of �1

and, after you have done the work, you receive +R for every day until T .

Suppose the agent moves to “promise” but never moves to “help friend”. This results in an out-
come that is worse than staying at “do nothing” the entire time. We call this procrastinating. The
optimal agent (without softmax noise) never procrastinates. It either does the work without unnec-
essary delay or does nothing1. Time-inconsistent agents can procrastinate depending on R and the
discount rate k

h

. The Naive discounting agent hallucinates that it will “do work” after first moving
to “promise”, but once actually at “promise”, it delays the work indefinitely.

We set T = 8 and condition on the observation that the agent procrastinates, i.e. moves directly to
“promise” and then stays there for the remaining 7 days. The goal is to infer R (the utility of helping
the friend). We compare the “optimal” model (no time-inconsistency) to a “potentially discounting”
model that includes both Naive discounting and optimal planning. Figure 2a shows that under both
models, the expected posterior value of R is low. However, the value for the discounting model is
higher, as it can explain away the agent’s not helping by a higher discount rate k

h

. Additionally (not
shown), we infer high noise when we assume optimality, since the optimal agent only intentionally
endures the �✏ cost of moving to “promise” if it will then do the work. Since the agent did not do
the work, it must have high noise if it is (otherwise) optimal.

2. Neglect of low-probability events (Monte Carlo approximation)

Consider the following problem:

John is hiking and has to choose between climbing up to the Tall peak or the Short
peak. The Tall peak is more spectacular, but comes with a small probability p

d

of disaster (e.g. death or injury). We assume John has no uncertainty about his
utilities for Tall and Short, and that John knows p

d

.

We aim to infer John’s utility for climbing the Tall peak, U
t

, relative to the cost of disaster. We com-
pare an “optimal” model (which solves the MDP exactly) with a Monte Carlo model (“MC”) where
the agent samples N times from the state transition function to approximate an action’s expected
utility. We set a low prior on U

t

being close in magnitude to the cost of disaster. The MC model
has a broad prior on N and includes planning behavior indistinguishable from optimal as a special
case. We condition on the observation that John moves directly to the Tall peak. Figure 2b shows
the posterior mean for U

t

as a function of the probability of disaster p
d

. For both models, as p
d

1It does the work if R(T � 2) > �(1 + ✏).

4

Inferred"
value"of"
helping"
friend

7.(Model(for(biased(agent:(Myopia

• Simple)myopia)(near)sighted):"ignore"any"rewards"or"costs"after"time"
k1%>%0%(even"though"you’ll"still"be"alive)."
• Bounded)ValueRofRInformation:)ignore"the"value"of"information"
gained"after"time"k2%>%0%(even"though"you"will"still"get"benefits"from"
information)."

7.(Model(for(biased(agent:(Myopia

●

●

●

●
● ● ● ●

0.2

0.4

0.6

0:
Noth

ing

1:
Prom

ise
d

2:
Prom

ise
d

3:
Prom

ise
d

4:
Prom

ise
d

5:
Prom

ise
d

6:
Prom

ise
d

Day and state

In
fe

rre
d

ut
ilit

y
of

 h
el

pi
ng

 fr
ie

nd

●

Optimal agent
Potentially discounting

Discounting

(a)

● ● ●
●

●

●

●

125

150

175

200

0.001 0.010 0.100

Risk probability

In
fe

rre
d

ut
ilit

y
of

 ta
lle

r m
ou

nt
ai

n

●

Optimal agent
Monte Carlo

Monte Carlo

(b)

●

●

●
●

●
●

3

4

5

0 1 2 3 4 5

Trials where agent chooses A

In
fe

rre
d

ut
ilit

y
of

 re
st

au
ra

nt
 A

●

Optimal agent
Potentially myopic

Myopic planning

(c)

●

● ● ●

0.9

1.2

1.5

1.8

0 1 2 3

Trials where agent chooses A

In
fe

rre
d

ut
ilit

y
of

 re
st

au
ra

nt
 A

●

Optimal agent
Potentially bounded VOI

Bounded VOI

(d)

Figure 2: Examples of inferences about utilities for optimal and bounded agents

the comments has negative utility to you because it is tedious and will take a whole
day. The paper will be submitted in T days and comments are more helpful earlier.

There are two decisions to make. First, you decide whether to promise your friend that you will offer
prompt comments, i.e., move from “do nothing” to “promise” node in Figure 3. After you promise,
they send you the paper and the next day you decide whether to “do work” (which results in the
“help friend” outcome) or to stay in the “promise” state. There is no cost to staying in “do Nothing”,
but there is a tiny cost of �✏ for every day in “promise”. Doing the work has a one-time cost of �1

and, after you have done the work, you receive +R for every day until T .

Suppose the agent moves to “promise” but never moves to “help friend”. This results in an out-
come that is worse than staying at “do nothing” the entire time. We call this procrastinating. The
optimal agent (without softmax noise) never procrastinates. It either does the work without unnec-
essary delay or does nothing1. Time-inconsistent agents can procrastinate depending on R and the
discount rate k

h

. The Naive discounting agent hallucinates that it will “do work” after first moving
to “promise”, but once actually at “promise”, it delays the work indefinitely.

We set T = 8 and condition on the observation that the agent procrastinates, i.e. moves directly to
“promise” and then stays there for the remaining 7 days. The goal is to infer R (the utility of helping
the friend). We compare the “optimal” model (no time-inconsistency) to a “potentially discounting”
model that includes both Naive discounting and optimal planning. Figure 2a shows that under both
models, the expected posterior value of R is low. However, the value for the discounting model is
higher, as it can explain away the agent’s not helping by a higher discount rate k

h

. Additionally (not
shown), we infer high noise when we assume optimality, since the optimal agent only intentionally
endures the �✏ cost of moving to “promise” if it will then do the work. Since the agent did not do
the work, it must have high noise if it is (otherwise) optimal.

2. Neglect of low-probability events (Monte Carlo approximation)

Consider the following problem:

John is hiking and has to choose between climbing up to the Tall peak or the Short
peak. The Tall peak is more spectacular, but comes with a small probability p

d

of disaster (e.g. death or injury). We assume John has no uncertainty about his
utilities for Tall and Short, and that John knows p

d

.

We aim to infer John’s utility for climbing the Tall peak, U
t

, relative to the cost of disaster. We com-
pare an “optimal” model (which solves the MDP exactly) with a Monte Carlo model (“MC”) where
the agent samples N times from the state transition function to approximate an action’s expected
utility. We set a low prior on U

t

being close in magnitude to the cost of disaster. The MC model
has a broad prior on N and includes planning behavior indistinguishable from optimal as a special
case. We condition on the observation that John moves directly to the Tall peak. Figure 2b shows
the posterior mean for U

t

as a function of the probability of disaster p
d

. For both models, as p
d

1It does the work if R(T � 2) > �(1 + ✏).

4

agentmodels.org
Interactive,"online"tutorial"and"open@source"library"for"constructing"this"
kind"of"model (Work"in"progress).

Main"sections:"
• Agent"models"for"one@player"sequential"problems"(MDPs,"POMDPs,"
RL),"where"agent"can"be"biased
• Inference"(IRL)"for"a"large"space"of"possible"agents
• Multi@agent"interactions:"coordination,"group"preferences."

Acknowledgments

• Future"of"Life"Institute
• ONR
• DARPA
• Future"of"Humanity"Institute,"University"of"Oxford
• Department"of"Psychology,"Stanford"University

