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1. Motivation for learning human preferences

how do peoplevalue work vs.
leisure, short-term vs. long-term, country vs. friends & family?

recommendation(movie, job,
dating), create tailored content.

the more systems understand our
preferences, the more they can help us make high stakes decisionsin
novel circumstances.
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2. Learning preferences with IRL

Inverse Reinforcement Learning (Al) / Structural Estimation (Econ):
* Unsupervised learning, assumed modelis MDP, POMDP, RL.

* Learn from sequences of choices in complex environments (cf. Netflix)

* Learn utility/reward function not policy: enduring cause not contingent
effects.

* People act on their preferences without ability to reportthem
guantitatively (driving skill, detailed vacation plan)



3. The problem of systematic error

* [RL: infer preferences from observed actions ... assuming human fits
(MDP/POMDP) model up to random (softmax) errors.

* But human make systematicerrors! Person smokes every day but
regrets it.

* Behavioral economics (hyperbolicdiscounting, Prospect Theory)

e Bounded cognition (forgetting, limited computational ability, etc.)



4. Learning from ignorant, inconsistent agents

Our approach:

1. buildflexible generative modelsto capture a range of biases and
cognitive bounds (while maintainingtractability)

2. jointlyinfer biases (or lack thereof) and preferences frombehavior

3. if successful, can help humans overcome biases



5. Human bias: Time inconsistency

* Intuition:tonightyou want to rise early but tomorrow you want to
sleep in.

* Most prominentbias: addiction, procrastination, impulsiveness, will-
power / pre-commitment.

* Formally, any non-exponential discountingimplies time-inconsistency.



5. Human bias: Time inconsistency

Discount factor = 1/(1+kt)

At t=0, you prefer S80 at t=8
to $S70 at t=7 (curve shallow)

At t=7, you re-evaluate and
prefer $70 now to $S80
tomorrow (curve steep).
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5. Model for biased agent

MDP model: EUg [a] = U(s,a) + E [EUy [a']]

s’.a’

with s’ ~ T'(s,a) and a’ ~ C(s’)

MDP + Hyberbolic discounting (variable d for “delay” measures how
far in the future the action a would take place):

1
Ty ka” St E, B o]
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6. Goal for examples and experiments

e Show that ignoringbiases (assuming optimality)leads to mistakes in
learning preferences

* Mistakes occur in simple, uncontrived, everyday scenarios.
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5. Model for biased agent - NAIVE

MDP model: EUg [a] = U(s,a) + E [EUy [a']]

s’.a’

with s’ ~ T'(s,a) and a’ ~ C(s’)

MDP + Hyberbolic discounting (variable d for “delay” measures how
far in the future the action a would take place):

1
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a ~ C(s',d+1)

EUS,d [CL] —



5. Model for biased agent - SOPHISTICATED

MDP model: EUg [a] = U(s,a) + E [EUy [a']]

s’.a’

with s’ ~ T'(s,a) and a’ ~ C(s’)

MDP + Hyberbolic discounting (variable d for “delay” measures how
far in the future the action a would take place):

L_U(s,a)+ E [EUy g @]

EUs,d [CL] — 1 T Id ) soaf |
o ~ C(s'.0)
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6. Model for biases agent: Procrastination




6. Model for biased agent: Procrastination
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/. Model for biased agent: Myopia

» Simple myopia (near sighted): ignore any rewards or costs after time
k1 > 0 (even though you’ll still be alive).

* Bounded Value-of-Information: ignore the value of information
gained after time k2 > 0 (even though you will still get benefits from
information).




/. Model for biased agent: Myopia

Myopic planning
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Interactive, online tutorial and open-source library for constructing this
kind of model (Work in progress).

Main sections:

* Agent models for one-playersequential problems (MDPs, POMDPs,
RL), where agent can be biased

* Inference (IRL) for a large space of possible agents
* Multi-agentinteractions: coordination, group preferences.



Tom’s decision rule is to take action a that maximizes utility, i.e., the action
arg max,.,U(T'(s,a))

In WebPPL, we can implement this utility-maximizing agent as a function
maxAgent that takes a state s € S as input and returns an action. For Tom’s
choice between restaurants, we assume that the agent starts off in a state
"default", denoting whatever Tom does before going off to eat. The program
directly translates the decision rule above using the higher-order function
argMax.

// Choose to eat at the Italian or French restaurants
var actions = ['italian', 'french'];

var transition = function(state, action){
return (action === 'italian') ? 'pizza' : 'steak frites';

}i

var utility = function(state){
return (state === 'pizza') ? 1 : 0;

}i

var maxAgent = function(state){
return argMax(
function(action){
return utility(transition(state, action));
}I
actions);

}i

print("Agent chooses: " + maxAgent("default"));

run

Agent chooses: french
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