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Abstract

Iterated Distillation and Amplification (IDA) is a framework for
training ML models. IDA is related to existing frameworks like
imitation learning and reinforcement learning, but it aims to solve
tasks for which humans cannot construct a suitable reward function
or solve directly.

This document reviews IDA and proposes three projects that
explore aspects of IDA. Project 1 applies IDA to problems in high-
school mathematics and investigates whether learning to decompose
problems can improve performance over supervised learning. Project
2 applies IDA to neural program interpretation, where neural nets
are trained on the internal behavior (execution traces) of traditional
computer programs. Project 3 investigates whether adaptive com-
putation time (varying compute at inference time as a function of
the input) can improve the robustness and efficiency of IDA.

Our goal in outlining these projects is to generate discussion and
encourage research on IDA. We are not (as of June 2019) working
on these projects, but we are interested in collaboration.
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0 Background on IDA
0.1 What is IDA?

Iterated Distillation and Amplification (IDA) is a framework for training models
from data [1, 2]. IDA is related to and builds on existing frameworks like su-
pervised learning, imitation learning, and reinforcement learning. It is intended
for tasks where:

1. The goal is to outperform humans at the task or to solve hard instances.

2. It is not feasible to provide demonstrations or reward signals for super-
human performance at the task.!

3. Humans have some high-level understanding of the task and can also pro-
vide demonstrations or reward signals for easy instances of the task.

The idea behind IDA is to bootstrap using an approach similar to Alp-
haZero [3], but with a learned model of human reasoning steps taking the place
of the fixed game simulator.

We will explain IDA in abstract terms and then describe concrete examples.
For broader discussion of IDA, including its relevance to the value alignment
problem, see [1, 2, 4, 5, 6, 7].

0.1.1 Technical description of IDA

We consider the following learning problem: We want to train a model (e.g. a
neural net) to solve tasks from the set 7', where T contains a series of tasks that
get progressively harder for humans to solve. Formally, let T' = Ufio T;, where
tasks in T;, are harder than tasks in T,,_; for all n.

We are given a training set which includes solutions to the easiest class of
problems 7 and human demonstrations of decomposing tasks T, into finitely
many slightly easier tasks in T, .

In IDA, the initial training steps are:

1More precisely: it is infeasible to provide large numbers of demonstrations or sufficiently
dense reward signals for methods like imitation learning or RL to work well.



1. M is trained by supervised learning® to reproduce the answers to the
easiest tasks Tj.

2. M is trained by supervised learning to imitate the human demonstrations
for decomposing a task z € T,, into a set of tasks in 7,,_; and then
aggregating the solutions to solve x.

Steps (1) and (2) are analogous to the two parts of a recursive algorithm: the
base case and the recursive step. After initial training, M can solve tasks in T}
by first decomposing them into tasks in Tj. M is then trained by supervised
learning on its own solutions to tasks in 77, enabling M to solve T tasks directly
(i.e. without decomposition). Solving a task in 7 directly involves a single call
to M, while solving by decomposition into tasks in T requires M to be called
on each of the T tasks.

This process of “training on its own solutions” can be iterated. M is trained
by supervised learning to directly solve increasingly hard tasks in 7', where
the target solutions (i.e. labels for supervised learning) are produced by M
itself via decomposition into tasks M can already solve. If supervised training
works perfectly at each iteration, then eventually M can solve any task in 7'
directly (with only single call to M). (This depends on the strong assumption
that humans can decompose all tasks T;, into tasks in T,,_; — see [8, 11] for
discussion.)

We can now summarize IDA (see Figure 1). After training on steps (1) and
(2), the “base case” and “recursive step”, the following steps are repeated (for
n > 0):

e Amplification Step
M solves tasks in T,, by decomposing them into tasks in 7}, _1, which it
solves directly (without decomposition).

e Distillation Step
M is trained by supervised learning to solve tasks in T,, directly, with
target solutions coming from the Amplification Step.

It is called the “Amplification Step” because it amplifies the capability of model
M. While M can only solve tasks in T, directly, M can be used (via decom-
position and aggregation) to solve tasks in T,.

In the “Distillation Step”, the slower amplified model (which makes multiple
calls to M) is distilled into a faster process with a single call to M. This is
like distillation for neural nets [12], where a large net (or ensemble of nets) is
“distilled” into a smaller net that tries to capture the behavior of the large net.
In general, it is unlikely that distillation of the slower process will be perfect.
This can be addressed using RI-based distillation or by selectively choosing
when to use fast M directly and when to fall back to the amplified model (see
Project 3).

2We describe TDA based on supervised learning, similar to [8], since this is what the
three projects in this document focus on. This can be substituted with RL or other training
schemes, see [9, 10]. We view answering questions, problem decomposition, and aggregation
of subproblem answers all as sequence-to-sequence problems, so we can train a single model
M to solve them. We could also train distinct models.
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Figure 1: Diagram showing the first few Amplification and Distillation steps in IDA
training. First (far left), M is trained by supervised learning on each task = € Tp.
Second, M solves each task z € T} by decomposing into tasks {zq, zs} € Tp and solving
these directly. This eventually produces a dataset of solved tasks x € T, which M is
trained to solve directly by supervised learning (leftmost “distill” step). This process
is then repeated.

To simplify the exposition, we have presented M as being trained to decompose
tasks and learn all base case solutions before the iterative training by Amplifica-
tion and Distillation begins. In practice, these processes (learning to decompose
harder problems and gathering additional base case solutions from humans, and
learning to solve harder problems directly) would happen in parallel [8].

0.2 Examples

Having given an outline of IDA, we will describe two toy examples of solving
problems with IDA: integer multiplication and shortest path in graphs.® These
examples are intended to build intuition for IDA. They are not themselves prac-
tically relevant use cases for IDA.

Example 1: Multiplication

This toy example shows how one would use IDA to train a neural net M to
multiply large integers. We assume that M has been pre-trained to add large
integers.

Following the pattern in the previous section, the initial training set contains
(1) simple multiplications (base case), and (2) demonstrations of decomposing
multiplications into simpler multiplications (recursive step). M is trained as
follows:

1. Train M on simple multiplications: single-digit multiplication and multi-
plication by 10. For example: 5 x 6 = 30, 10 x 234 = 2340, 9 x 8 = 72.

2. Train M to decompose multiplications into simpler multiplications by
distribution and other algebraic rules. For example:
88X 17=8x10+8x%x7
223 x4 =200 x4+23x4=(20x10) x 44 (20 x 4) + (3 x 4)

3The Multiplication example has not been implemented, but a version of the Shortest Path
example is implemented in [8].



After training M successfully on (1) and (2), it would be possible to solve large
multiplications exactly by recursively decomposing down to the base case. This
is similar to how exact multiplication is computed by traditional algorithms or
by humans. A tree illustrating this is shown in Figure 2:

384 x 19

300 x 19 84 x 19

300 x 10 4x19
300x9 80x19

Figure 2: A multiplication problem could eventually be solved by decomposing all
the way down to simple multiplications (without any distillation). Only the first two
levels of decomposition are shown here.

Recursing all the way to the base case would require many calls to the neural net
M. Instead, M could be trained incrementally using the IDA scheme described
above. If this was successful, M could eventually compute 384 x 19 or 79332 x
2927 in a single call, without the need to ever instantiate the fully expanded
slow process for large problems during training. This is a key property of IDA,
since recursive decompositions can (in general) result in a number of calls to
M that scales exponentially in the problem size, and so would be infeasible to
instantiate explicitly.

This example shows that IDA can easily fail if we use a standard neural
net as our model M. For example, a small MLP is not capable of learning to
multiply large integers in a single call. This is the case even for training the
MLP by supervised learning on ground-truth examples, e.g. training on pairs
((m,n),m x n) for m,n < 10°. Training by IDA will generally make learning
more difficult, because M will be trained by supervised learning on its own
answers to multiplication problems (instead of ground-truth answers).

This example also shows that IDA can fail regardless of the model M. It is
not generally possible to distill an exponential tree of calls to M into a single
call to M. However, there are many Al problems where research aims to better
approrimate an exponential-time computation. AlphaZero uses an IDA-like
algorithm to distill an exponential game-tree expansion into a feedforward neural
net. The neural net does not distill perfect play for Go or chess, but it achieves
impressive performance relative to humans (and formidable performance when
combined with MCTS).

Example 2: Shortest path in a graph

A recent paper by Christiano et al. [8] implements IDA and applies it to discrete
algorithms problems including union find, wildcard search, and shortest path.



To apply IDA to finding the shortest path between nodes s and ¢ in a directed
graph, we need an initial training set that covers the base case and recursive
step. These include:

1. A dataset of solutions to the easiest shortest path problems (for which
nodes s and t are adjacent).

2. A set of demonstrations of decomposing shortest path problems into smaller
shortest path problems and aggregating the results.

The decomposition in (2) is similar* to the following recursion, which is also
used in the dynamic programming algorithm for shortest path:

min-dist(s,¢) = min ({min-dist(s, z) + dist(z, t) | = adjacent to t})

Here “min-dist(s,t)” is the minimum path length between nodes s and ¢, and
“dist” is the distance between adjacent nodes. Christiano et al. use a Trans-
former model [13] as their model M and they compare two ways of training the
Transformer to compute the shortest path. The first approach is the IDA model
just described, which only gets labeled examples for the smallest shortest path
problems and must bootstrap to solve larger problems. The second approach is
regular supervised learning, where the model gets a large set of labeled examples
of all sizes. The main result is that the IDA approach is successful in getting
close to the performance of the supervised model. While this is a toy example,
it illustrates the general aim for IDA, which is training a model for tasks where
(a) there are only labels/demonstrations for easy problems, and (b) humans can
provide decompositions for going from harder to easier problems.

0.3 Related Work

As noted above, there are various discussions of IDA and its relevance to Al
alignment [1, 2, 6, 7]. These discussions are valuable as background but they
mostly abstract away the practical details of implementing an IDA system us-
ing ML. The only paper that actually implements IDA is the aforementioned
Christiano et al. However, the AlphaZero algorithm [3] is very similar to IDA [1]
and work applying AlphaZero (and related algorithms AlphaGo [14] and Expert
Iteration [15]) to chess/Go and to graph coloring [16] are relevant to thinking
about IDA experiments. IDA depends on bootstrapping and function approx-
imation, which are core topics in reinforcement learning [17, 18]. Recent work
on Deep Q-learning is especially relevant [19].

For IDA to help address value alignment problems for advanced ML sys-
tems, it would likely need to apply to tasks (and use decompositions) that
involve sophisticated reasoning in natural language. There is currently no pub-
lished research that is targeted at natural language tasks. Ought and OpenAl
have conducted preliminary experiments in an IDA-like setting with humans
in place of ML models. These experiments are aimed at shedding light on
whether different incentive structures for IDA-like approaches (e.g. different ob-
jective functions and reward signals) lead to aligned behavior. See examples
from Ought [20] and OpenAl [21] and stay in touch with Ought® for the latest
information on experiments.

4Christiano et al. use a slightly more complicated decomposition.
Shttps://ought.org
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In the two toy examples above, IDA trains a model to imitate behavior.
This is an extension of supervised learning and imitation learning, and does not
involve reinforcement learning. However, as mentioned above, IDA is compati-
ble with RL [10, 9]. There is also a framework called “Debate”, which is closely
related to IDA and draws on self-play reinforcement learning as a method of
bootstrapping. Irving et al. [22] introduces Debate, explores analogies to com-
putational complexity theory, and describes links between Debate and IDA.

0.4 Project Goals

The rest of this document outlines three projects that could help clarify aspects
of IDA. These projects aim to extend Christiano et al [8] in a few different ways:

e The projects train a single model M to perform a wide range of types
of decompositions. By contrast, Christiano et al. train a fresh model for
each algorithmic problem (i.e. one for each of union find, shortest path, and
wildcard search). The decompositions for these algorithmic problems have
dynamic programming structure, so each model decomposes a problem
instance into smaller instances of the same kind of problem (e.g. a shortest
path problem is broken down into smaller shortest path problems).

e The projects are well suited to investigating extrapolation and generaliza-
tion out of distribution. Projects 1 and 2 build on prior work in ML which
tests generalization performance in mathematics and neural programming
tasks. Project 3 is focused on general approaches (adaptive computation
time and calibration) to improving robust generalization.

e In Christiano et al. the main goal is for a model trained by IDA to match
the performance of a model trained by supervised learning. The IDA
model has less labeled data and is trained by bootstrapping on its own
labels. While this is one possible goal for our projects, we also consider
the goal of improving test-time performance by making multiple calls to
the model using amplification. Improving test-time performance by am-
plification is similar to the way AlphaZero uses MCTS during competitive
matches to improve performance over the policy net.

There are many other possible projects on IDA. Research projects that push in
the following directions seem particularly valuable:

e Produce theory and empirical knowledge about training IDA systems,
analogous to knowledge of how to train supervised learning or reinforce-
ment learning systems.

e Connect IDA to existing work in ML. The projects below connect to lan-
guage modeling, neural programming, calibration for neural networks, and
adaptive computation time. IDA is also related to semi-supervised learn-
ing, deep reinforcement learning, dynamic programming, belief propaga-
tion, etc. A research project could explore and develop any of these con-
nections.

e Solve problems with IDA that can’t be solved by other approaches. This
is the ultimate goal of IDA, and would draw interest from the larger ML



community. The projects below are not primarily aimed to achieve this,
but they may provide a useful first step. Two ways in which IDA could
solve problems that can’t be solved by other approaches are:

— By distilling large (i.e. exponential in problem size) trees to a fast
machine learning model (as in AlphaZero).

— By learning decomposition steps from human data. This is for do-
mains (e.g. common-sense reasoning) where we are not able to write
down an algorithm to decompose problems.

1 Project 1: Amplifying Mathematical Reason-
ing

1.1 Motivation

Decomposition is a fundamental strategy for solving problems in mathematics.
Consider the following problem from high-school mathematics:

g(y) = y-2
f(x) = xxg(x) + 3x73
Find the derivative of f at x=1.

We can solve the problem by decomposing it into sub-problems which only
depend on parts of the whole problem. Here is one possible decomposition:

Sub-problem 1:

gly) = y-2

f(x) = xxg(x) + 3x73

Write f as a polynomial in x in standard form.
Solution: f(x) = 3x"3 + x™2 - 2x

Sub-problem 2:

f(x) = 3x"3 + x°2 - 2x
Differentiate f.

Solution: f’(x) = 9x°2 + 2x - 2

Sub-problem 3:

f2(x) = 9x72 + 2x - 2
Compute £’(1).
Solution: 9

These sub-problems could themselves be decomposed: the first sub-problem de-
composes to substituting the function g and expanding the resulting expression.

1.2 Project Directions

The aim of this project is to train a model via IDA to solve mathematics prob-
lems. Following Christiano et al [8], we could use IDA at training time to



bootstrap from a small labeled dataset. This is like a student learning math by
solving problems from a textbook with no solutions at the back of the book.
Another possible goal is to use amplification at test time to apply more com-
pute to harder problems, and so achieve better test-time performance than a
standard supervised model.

There are many possible choices of mathematics problem, including;:

1. Mathematical problems in a formal language (e.g. theorem proving [23]).
2. High-school algebra (in a mix of natural language and math notation [24]).

3. So-called “word problems”, which are problems in natural language that
need to be translated into math. For example, many problems on the
American GMAT or GRE exams [25].

4. Advanced mathematics problems: competition or Olympiad math, university-
level proof-based math [26].

Problems in (1) do not require working with natural language. Many such
problems have a natural decomposition via brute-force search, similar to game-
tree search in Chess. These problems are a good testing ground for some aspects
of IDA and we encourage research on them. However this document focuses on
problems in (2)-(4) and especially (2). Problems in (2)-(4) are natural language
problems which don’t necessarily have an obvious decomposition strategy. This
makes them more similar to problems in areas outside mathematics such as
science, philosophy, and common-sense reasoning.

How can we tackle natural language mathematics problems in IDA? The
main question is how to produce decompositions. There are two basic options:

1. Have human experts produce decompositions of the problems.

2. Write an algorithm that solves problems by decomposition as in Christiano
et al [8]. This algorithm is likely to resemble classical Al approaches
(“GOFAD).

Using human data is the more general approach, as it applies outside mathemat-
ics. However, it is unlikely that the usual way people solve problems would yield
the most useful decompositions. So, part of the research effort is to work out
which kinds of decompositions help most and train human experts to produce
them.

For option (2) above, there are two kinds of algorithm for decomposition.
The first kind is an efficient algorithm that solves all problems in the class of
interest (as in the multiplication and shortest path examples). A neural net
trained using IDA is unlikely to perform better than such an algorithm. Ex-
periments with IDA would aim not at state-of-the-art performance but instead
at investigating certain aspects of IDA. We discuss this in the next section.
The second kind of algorithm solves problems in the class inefficiently and so
can only solve small problems in practice. In this case, it is possible that IDA
can achieve state-of-the-art performance by learning to distill decompositions
into a much more efficient neural algorithm. However, for advanced mathemat-
ics problems in natural language, it is not clear what this inefficient algorithm



would look like.® So there is a separate research project in investigating such
algorithms.

In the next section, we outline a project that uses high-school math prob-
lems in natural language. We suggest starting with algorithmically generated
decompositions and later extending this to decompositions provided by humans.

1.3 IDA for High School Mathematics
1.3.1 Task and Dataset

Saxton et al. [24] introduce a dataset of high-school level mathematics problems
in natural language. The problems cover arithmetic, algebra, differentiation,
probability, and number theory. Here are some examples:

Question: Solve -42*r + 27*c = -1167 and 130*r + 4xc = 372 for r.
Answer: 4

Question: Simplify sqrt(200)*2 + sqrt(200) + sqrt(200) + -4.
Answer: -4 + 40%sqrt(2)

Question: Let u(n) = -n~3 - n~2. Let e(c) = -2%c~3 + c. Let
£(j) = -118%e(j) + 54*u(j). What is the derivative of f(a)?
Answer: 546*a”~2 - 108*a - 118

Question: Three letters picked without replacement from
qqqkkklkgkkk. Give prob of sequence qql.
Answer: 1/110

Question: What are the prime factors of 2352326737
Answer: 3, 13, 19, 317453

Question: Let j = -5 - 28. Is j/6%(-14) a composite number?
Answer: True

The problems are generated by an algorithm, so there is unlimited training data.
The dataset includes test sets for both interpolation and extrapolation. The ex-
trapolation questions have quantities that vary outside of the range encountered
on the training set.

The paper includes baselines for models trained by supervised learning. The
questions and answers are both represented as strings, so it can be treated as a
sequence-to-sequence problem. The best performing model is a standard Trans-
former with 30M parameters, which achieves 76% model accuracy (probability
of a correct answer) on interpolation and 50% on extrapolation.

1.3.2 Approach with IDA

How should one generate decompositions for training IDA to solve these math
problems? One option is to write an algorithm for decomposing problems, rather
than collecting human decompositions. The problems were generated using a
compositional algorithm: consider the last example in the list above, which

6If mathematics problems are fully formalized, we can search over formal proofs. But if
the mathematics is informal, it is much harder to provide an algorithm that would eventually
(given arbitrary amounts of time and compute) solve the problems.

10



combines algebra (specifying an integer using equations) and number theory
(checking if the integer is composite). This algorithm can be run in “reverse” to
help generate decompositions. However, it is not obvious how close the resulting
decompositions would be to decompositions that are a good fit for IDA training.
(For instance, the best decompositions could be more or less fine-grained.)

One objective would be to do better than the supervised baseline at test time
by applying amplification (i.e. decomposing the problem and using multiple
calls to the model M). In particular, amplification promises to do better at
extrapolation to bigger problems or problems with larger numerical quantities.
Another objective is to train from a smaller number of labels using distillation
and try to rival the performance of the supervised baseline.

1.3.3 Non-Amplification Baselines

The simplest baseline is supervised learning (as in Saxton et al [24]). The math
problems and solutions are represented as strings, and the model is trained to
map strings to strings. Another baseline would make use of the same decomposi-
tion training data as IDA. Instead of training the model to decompose problems,
we could use the decomposition as an auxiliary objective. The model would be
trained to produce both the decomposition and the answer. An alternative ap-
proach is to train a model to take strings as input and then produce output
suitable to be fed into a symbolic math system (e.g. SymPy).

1.3.4 Questions to investigate

The project would seek to investigate some of the following questions:

e What is the test-time performance of applying amplification vs. a baseline
that makes a single call to the model (distillation) vs. a baseline that was
trained by supervised learning?

e What is the performance on extrapolation and on off-distribution prob-
lems?

e What is the performance of a distilled model trained by IDA (from a
small number of labeled examples) vs. the supervised baseline (with a
large labeled training set)?

e How does performance vary with different kinds of decomposition strate-
gies?

e How robust is the amplified model to noise in the training data and to
approximation error in the neural net?

e Can we find a decomposition strategy that makes the model more robust
to errors/noise?

e When training a model to solve sub-problems, we need to pick some dis-
tribution over sub-problem examples. How does this impact performance?
Are there principles for generating training data in the most useful way
for IDA?

11



1.4

2.1

Using amplification at test time is one way to vary the amount of compute
used to solve problems. Another approach is to use recurrent models and
adaptive computation time. How does this compare to IDA? (See Project
3 for more discussion and references).

Can we train the model from decompositions provided by humans? What
kind of decompositions should we use? Can these be augmented by algo-
rithmically generated decompositions?

Related Work

Analysing Mathematical Reasoning Abilities of Neural Models
(Saxton et al.) [24]

Dataset: https://github.com/deepmind/mathematics_dataset.

The paper by Saxton et al. discussed above.

Neural Arithmetic Logic Units (Trask et al.) [27]

A specialized neural net architecture for doing arithmetic. It achieved
state-of-the-art results (as of 2018) on various tasks, including pure arith-
metic and arithmetic combined with vision/natural language.

Program Induction by Rationale Generation (Ling et al.) [25]
Dataset: https://github.com/deepmind/AQuA

This paper introduces a dataset of mathematical word problems (based
on US standardized tests). Humans had to “show their work” while solv-
ing the problems. The paper has a model that learns to generate these
intermediate steps (in addition to learning to solving the problems).

Sigma Dolphin
microsoft.com/en-us/research/project/sigmadolphin-2/
Dataset of natural language math problems, taken from Yahoo Answers.

HOList: An Environment for Machine Learning of Higher-Order
Theorem Proving (Bansal et al.) [23].

This dataset contains fully formalized proofs for a large number of theo-
rems and a framework for training ML systems to produce proofs.

Project 2: IDA for Neural Program Interpre-
tation

Motivation

Many algorithms (e.g. matrix arithmetic, shortest path, sorting) involve de-
composing problems into progressively smaller problems and then aggregating
results. More generally, computer programs in high-level languages decompose
tasks into progressively smaller tasks, and ultimately into the primitive oper-
ations of the language. We can explore the capabilities of IDA by training a
model on the decompositions used in the execution of computer programs.

12
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Training IDA on decompositions from programs is closely related to research
on Neural Program Interpretation (see Reed and de Freitas [28] and related work
below) or “NPI”. In NPI, a model is trained to mimic the internal behavior of an
algorithm and not just its input-output behavior. Moreover, the model trains
not just on the primitive operations of the algorithm but on its hierarchical de-
composition (i.e. the way procedures call other procedures). As with IDA, one
motivation for learning this internal behavior is to achieve stronger generaliza-
tion. Another motivation is to integrate hierarchical discrete computation with
the sort of pattern recognition in high-dimensional spaces enabled by machine
learning (see third experiment in [28]).

2.2 Project Directions

The project could focus on either of the following areas:

1. Distillation of programs
In contrast to most work on NPI, the goal of IDA experiments could be
to use program decompositions as training data to learn more efficient
“neural” programs. The idea is to distill elaborate computations into a
single call to a neural net, or to combine the exact (slow) computation
with distillation (as in AlphaZero).

2. NPI within a more general framework for learning from decom-
positions
Much of the NPI work uses environments and architectures designed spe-
cially for NPI. For IDA, we would aim to replicate NPI results, but in a
framework that would also allow learning from human decompositions in
natural language.

We expect distillation of programs to be challenging. If we take a complicated
algorithm and try to distill it into a neural net, there is likely to be approxima-
tion error—and errors will usually be larger for inputs that are off the training
distribution. This will cause problems both during IDA’s iterative training pro-
cedure and also at test time. Part of the project would be to investigate how
well distillation works for different kinds of programs and for different ways of
organizing the training curriculum. If the distilled model was calibrated, then
IDA could recognize when distillation was likely to fail and fall back on us-
ing amplification. Project 3 (below) explores this “adaptive computation” or
“meta-reasoning” approach.

2.2.1 Decision Points

There are many choices to make in devising IDA experiments in the NPI setting:

o Which programs should we try to learn?
The research on NPI has focused on basic algorithms for tasks like integer
arithmetic and sorting. Applying IDA to these basic algorithms could be a
good starting point, as they allow comparison to existing work. However,
it isn’t clear how much experience with these algorithms would generalize
to other applications of IDA. It could be good to consider algorithms that
work with databases or knowledge bases, or to consider algorithms that

13



operate on human-readable structures like natural languages or images.
We also think that pure functional programming is a better fit for IDA
than imperative programming. See [11, 29] for relevant discussion.

o What kind of built-in operations and environments should we use?
In existing work on NPI, the neural net is given outputs that correspond
to basic operations on data. This makes it easier to learn algorithms
that depend on those basic operations. For IDA, it would be ideal to
learn these operations from examples. (If we were learning from human
decompositions, we might not know about these “basic operations on data”
ahead of time).

o What kind of performance objective should we focus on?
Some work on NPI has focused on getting perfect performance on narrow
algorithmic tasks. It’s not clear if this is the right objective for IDA. We
might care about (a) generalizing well to much larger inputs most of the
time (but not in the worst case), (b) being robust to distribution shift,
and (c) having one neural net learn a wide variety of algorithms.

2.2.2 Non-Amplification Baselines

For learning to predict the next step of a program from examples, simpler ML
methods (random forests, logistic regression, etc.) may perform better than
neural networks. For performing the same task as a traditional program, any
neural program interpreter working with polynomial-sized trees will add signif-
icant overhead and so is unlikely to *improve* performance. One could also
consider tasks that require ML to process the inputs (e.g. tasks involving im-
ages). The baseline in this case would be a program that defers some decisions
to a classifier.

2.3 Related Work

Neural Programmer-Interpreters (Reed and de Freitas) [28]

A quote from the introduction about the motivation for the paper:

“We may envision two approaches to providing supervision. In one,
we provide a very large number of labeled examples, as in object
recognition, speech and machine translation. In the other, the ap-
proach followed in this paper, the aim is to provide far fewer labeled
examples, but where the labels contain richer information allowing
the model to learn compositional structure. While unsupervised and
reinforcement learning play important roles in perception and motor
control, other cognitive abilities are possible thanks to rich supervi-
sion and curriculum learning. This is indeed the reason for sending
our children to school.”

Summary of the approach:

e The model (called the “neural programmer-interpreter”’) has a single in-
ference core for executing three different programs (addition, sorting, ro-
tating CAD models). So one set of LSTM parameters are used to execute
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all programs. However, the different programs are stored as different em-
beddings, stored in a learnable persistent memory.

e The sequence of the model’s actions depends on the environment state
and action history.

e For each program (addition, sorting, rotating CAD models), the model is
given a specific environment and set of actions in that environment. The
model is trained to compose these actions. For integer addition, there
are 1-D arrays and read-only pointers (for reading inputs), as well as 2-D
scratchpads and output arrays. For rotating CAD models, there’s a CAD
renderer with controllable elevation and azimuth movements.

e The LSTM input of the previous computation step is a vector embedding,
rather than text.

Making Neural Programming Architectures Generalize via Recursion
(Cai et al.) [30]

Builds on Reed and de Freitas (above) and has no new machinery. They simply
allow a function to call itself. This means it can solve instances of arbitrary size
using recursive function calls, each of which have bounded length. This allows
for generalization off the training distribution. The hidden state of the LSTM
controller is reset (to zero) at each subprogram call, but the environment state is
not reset. They learn the recursion termination condition. They achieve 100%
generalization on all tasks (albeit for simple tasks).

Parametrized Hierarchical Procedures for Neural Programming (Fox
et al.) [31]

Their model is related to IDA for neural programming (it learns PHPs that
can recursively call other PHPs). Their tasks are limited to addition and to a
building a tower in gridworld. They provide a “weak supervision” motivation:
learn from a mix of traces that show what information should be remembered
from previous states and also from traces that omit that information.

Neural Program Lattices (Li et al.) [32]

This paper has a “weak supervision” motivation: learn from mix of full traces
and traces without program calls/arguments. They generalizes to 500-digit
addition, but not to 1000-digit addition.

Improving the Universality and Learnability of Neural Programmer-
Interpreters with Combinator Abstraction (Xiao et al.) [33]

Adds combinator abstraction from functional programming. One motivation
is to use reinforcement learning to learn programs without supervision. The
combinator makes the search space smaller.
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Adaptive Neural Compilation (Bunel et al.) [34]

Takes programs, translates them into a differentiable form, then uses backprop-
agation to optimize them. They optimize programs to be more efficient on a
restricted training distribution of problems.

Recent Advances in Neural Program Synthesis (Kant) [35]

This paper provides a summary of different approaches to NPI and Neural
Program Synthesis.

Learning Compositional Neural Programs with Recursive Tree Search
and Planning (Pierrot et al.) [36]

NPI approach that “incorporates the strengths of Neural Programmer-Interpreters
(NPI) and AlphaZero”. While relevant to IDA, this approach differs in impor-
tant ways.

3 Project 3: Adaptive Computation

3.1 Motivation

An ML model exhibits “adaptive computation” if it intelligently varies its com-
putations for different inputs. For example:

1. The model selects which type of computation to run: e.g. between a slow
tree search, a large neural net, and a small neural net.

2. The model prioritizes possible computations: e.g. which node to expand
next in a tree search.

3. The model determines how long to run a fixed computation: e.g. how
many MCTS samples, how many steps to run an RNN, etc.

A principled way to adapt computations is by “meta-level control” or “meta-
reasoning”. Meta-level control means applying ideas from optimal control and
Bayesian decision theory to selecting computations. The idea is to treat the
choice of computations as just another learning and planning problem. The
choice of computations can be optimized using end-to-end supervised learn-
ing [37], model-free reinforcement learning [38], or Bayesian decision theory [39,
40, 41].

Adaptive computation and meta-level control are not a major focus in cur-
rent deep learning research. Yet human cognition is often adaptive: people
dynamically decide how much time to spend on a task based on its perceived
difficulty. This is important when humans try to develop new ideas, which can
require anything from hours to years of thinking [42, 43]. By contrast, many
applications of ML have the following profile:

1. Training time: Large amounts of compute and time are permitted. For
example, training might take months and use many CPUs and GPUs.
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2. Test/deployment time: There are very strong constraints on compute.
For example, the trained model might be part of a web application and
so must perform inference in a fraction of a second.

Not all ML algorithms have this profile. When AlphaZero [3] plays competitive
matches, it has time to make many calls to a neural net for each move. Alp-
haZero uses MCTS to investigate promising moves from the current position. As
ML is applied to more tasks for which humans spend a long time thinking (e.g.
mathematics, science, business strategy), the profile of AlphaZero may become
more common.

IDA is well suited to adaptive computation. Training by IDA produces the
following algorithms:

e A quick but potentially inaccurate algorithm for solving problems, pro-
duced by distillation. This corresponds to a single call to the model M
(using the terminology from Section 0.1).

e An “anytime” algorithm for solving the same problems, which produces
more accurate or reliable answers as a function of doing more compute.
This is obtained by decomposing the problem using the learned decom-
position strategy (“Amplification”) and involves making multiple calls to
M.

3.2 Project Directions

Adaptive computation for IDA can be applied either during the iterative training
scheme or at test/deployment time:

1. Training time

The goal during training is to bootstrap by using amplification to solve
progressively harder problems. Adaptive computation time could be ap-
plied to select how much computation to apply to a given problem in the
training set. For example, if the distilled model already performs perfectly
on some class of problems, there is no need to run the slow amplified pro-
cess (with many calls to model M) on this class. It’s also possible to
apply active learning — automatically selecting problems that are more
informative about the objective.

2. Test time

The goal is to perform well on a set of test problems given a time bud-
get. If the test set is received in batch, then the algorithm would ideally
spend more of its time budget on the harder instances. This requires the
algorithm to recognize harder instances that will benefit from more com-
pute time (via amplification). There are also more fine-grained questions
about how to use the compute budget. For example, when using ampli-
fication, which problems should be decomposed first and how far should
the recursive decomposition go?

3.3 IDA, Fast and Slow

There are many ways to use adaptive computation as part of IDA. As a starting
point, we describe a simple form of adaptive computation, where the algorithm
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decides between a fast (distilled) process for solving problems and a slow process
that uses a fixed amount of amplification. The fast process makes a single call
to a neural net, while the slow process makes at most n calls to the same net.
For each input problem, the algorithm runs the fast process and has to decide
whether to also run the slow process. The goal is to balance the greater accuracy
of the slow process with a time/compute cost that is specified as part of the
problem statement.

This decision of whether to run the slow process could be trained end-to-
end, by always running both processes during training (as in [37]). A different
approach would be to use a calibrated model for the fast process and decide
whether to call the slow process based on the confidence of this calibrated model.

Which tasks would be a good testing ground for adaptive computation? The
mathematics and neural programming tasks (Projects 1 and 2 above) are useful
for testing purposes, because it’s easy to vary the amount of computation that
is necessary and sufficient for solving a problem. It’s also valuable to explore
tasks which have an “anytime” structure, where approximate solutions to the
task can be improved with additional compute. This would include planning,
natural language reasoning, chess, and strategic videogames.

How would this project differ from Projects 1 and 27 The aim in those
projects is to explore the performance of IDA on challenging tasks. It’s not
clear that any clever adaptive computation strategy is required to do well on
these tasks (though we can’t rule it out). In a related example, AlphaZero did
not select the number of MCTS samples as a function of the board position,
but instead used a fixed proportion of the remaining match time. Project 3, on
the other hand, is all about investigating adaptive computation for IDA. The
motivation is that adaptive computation is likely to play an important role as
IDA is applied to increasingly challenging tasks.

3.3.1 Non-Amplification Baselines

For any adaptive computation approach, it is important to compare against non-
adaptive approaches (which use a fixed amount of compute) and also against
simple heuristics for scaling up compute for harder instances. Amplification
could also be compared to adaptive approaches that do not use amplification
(e.g. something like [37]).

3.4 Related Work
Attending to Mathematical Language with Transformers (Wangper-
awong) [44]

There is a dataset (available at https://github.com/tensorflow/tensor2tensor)
and paper for addition/multiplication/subtraction of numbers. The paper ex-
plores Transformers that can use more compute for larger instances.

Adaptive Computation Time for Recurrent Neural Networks (Graves) [37]

Adaptive Computation Time for RNNs adds the probability of halting compu-
tation at current step to the output of RNN. The idea is to train the adaptive
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RNN end-to-end: running long computations at training time, which allows
differentiation of the halting probability.

Comparing Fixed and Adaptive Computation Time for Recurrent
Neural Networks (Fojo et al.) [45]

This paper presents experiments claiming to show that adaptive computation
time for RNNs (as in [37] above) is not needed because similar performance
is achieved with a regular RNN (which takes a fixed number of steps between
predictions).

Universal Transformers (Dehghani et al.) [46]
The paper applies Adaptive Computation Time to the Transformer architecture.
It shows improved performance on bAbI tasks with Adaptive Computation Time

On Calibration of Modern Neural Networks (Guo et al.) [47]

This paper tests the calibration of convolutional neural networks and finds that
they are poorly calibrated by default. They show that temperature scaling
(learning a temperature parameter that scales the softmax inputs) does a good
job of getting the network to be calibrated. They indicate a tradeoff between
accuracy and calibration (see their Figure 3).

Simple and Scalable Predictive Uncertainty Estimation using Deep
Ensembles (Lakshminarayanan et al.) [48]
They get calibrated uncertainty estimates for deep neural nets by:

e Using a proper scoring rule for the loss

e Performing adversarial training

e Using an ensemble of networks

Principles of Metalevel Control (Hay) [39]

Ph.D. thesis on metalevel control and metareasoning. Includes an excellent
introduction to the subject and a review of previous work. The technical con-
tributions include applying Bayesian decision theory to Bandit problems and
applying RL to tree-search (i.e. learning a tree-search policy rather than just
building in MCTS).

Learning to Search with MCTSnets (Guez et al.) [49]

They show how to learn the hyperparameters of Monte-Carlo Tree search end-
to-end, by playing single-player gridworld game Sokoban. They learn a more
sample efficient search than regular MCTS.
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