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Estimating Household 
Transmission of SARS-CoV-2

“If my housemate/family gets infected, is it inevitable I get 
infected?” 

“How much of all transmission happens at home?” 
 
“What is the risk of infection for essential workers vs. 
everyone else?” 
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Assuming there is lockdown/social distancing, how can spread 
be further reduced? We address: 

1. How much transmission takes place in households? 

2. How much does household transmission contribute to 
overall spread? 

3. Should policy target essential workers, some other 
group, or everyone? 

Overview
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Quantifying household 
transmission: Rh
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R = Effective reproduction number (at time t) 

   = Mean infections due to infected person i 

 

 Mean infections due to infected person i outside i’s 
household (“community”) 

 Mean infections due to infected person i inside i’s 
household 

R = Rc + Rh

Rc =

Rh =



 Mean infections due to infected person i inside i’s 
household 

Let i and j be in same household.  

SAR = household secondary attack rate     

        = probability i infects j, given j susceptible 

        = P( i → j  |  i infected, j susceptible) 

Rh =

Quantifying household transmission: 
secondary attack rate 
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Primary cases

t t+1

Blue box shows contacts in 
same hh as primary case 

R = # positive contacts / # primary

Rh = # positive hh contacts / # primary 

SAR = # positive hh contacts / # hh contacts

Contacts



Functional relationships
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SAR H

Rh

S/N

H: mean household size

S/N: prevalence in population


Rc



Functional relationships
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H = mean household size = 2.5. Let s = SAR. 
  
1. If i infected outside hh, i  infects  s(H−1)=1.5s  people.  
2. If i infected inside hh, there’s at most  H−2=0.5  
people left to infect! 
  

 

     

     

Rh ≈ P(infc)s(H − 1) + P(infh)s(1 − s)(H − 2)

=
Rc

R
s(H − 1) +

Rh

R
s(1 − s)(H − 2)

≈ 1.2s

SAR=0.2
Rc Rh
0.4 0.22
0.7 0.25



Conditional risk of infection
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 Mean infections due to infected person i inside i’s 
household 

Let i and j be in same household.  

SAR = P( i → j  |  i infected, j susceptible) 

Rh =

CRI = conditional risk of infection 

        = P( j  infected  |  i infected ) 

CRI allows for i → j and j → i.  



Estimating SAR from data
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We found 9 studies of household SAR from China (4), Korea (2), 
Taiwan, US, and Germany.  
 
Procedure: 

• Identify primary cases (symptoms/travel + PCR test) 

• Check households of primary cases for secondary cases 
(symptoms + PCR test) 

• Calculate:  

Rh = # positive hh contacts / # primary cases 

SAR = # positive hh contacts / # hh contacts



Problems with SAR estimates
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Problems with nearly all studies, which we’ll correct for: 

1. Biased (unrepresentative) sample of primary cases  
— e.g. <10% asymptomatic vs >20% in general  
— under-sample children 

2. Failure to detect positive secondary cases  
— PCR test only for symptomatic contacts (some studies) 
— PCR test has 10-50% false-negative rate 

3. Household could be infected from outside 
— Bias is probably small 



Asymptomatic Infection
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Asymptomatic rate (AR): 10-43% 

 
Asymptomatic infectivity: 
10-90% of symptomatic infectivity? 

Upshot 
1. Lack of asymptomatics among primary cases  
→ overestimate SAR if infectivity lower 

2. Lack of asymptomatics among secondary cases 
→ underestimate SAR 

Study AR

Vo’, Italy 43%

Gangelt, 
Germany 22%

Spain, 
national 25%

Cambridge 
HCW 28%

https://www.ft.com/content/f7d08906-b5c5-4210-b2c6-0ec95d533bc6
https://www.cam.ac.uk/research/news/testing-suggests-3-of-nhs-hospital-staff-may-be-unknowingly-infected-with-coronavirus


PCR false negative rate
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the optimal time for testing if the goal is to minimize
false-negative results. When the pretest probability of
infection is high, the posttest probability remains high
even with a negative result. Furthermore, if testing is

done immediately after exposure, the pretest probabil-
ity is equal to the negative posttest probability, mean-
ing that the test provides no additional information
about the likelihood of infection.

Since the outbreak began, concerns have been
raised about the poor sensitivity of RT-PCR–based tests
(18); 1 study has suggested that this might be as low as
59% (19). We have designed a publicly available model
that provides a framework for estimating the perfor-
mance of these tests by time since exposure and can
be updated as additional data become available.

Tests for SARS-CoV-2 based on RT-PCR added little
diagnostic value in the days immediately after expo-
sure. This is consistent with a window period between
acquisition of infection and detectability by RT-PCR
seen in other viral infections, such as HIV and hepatitis
C (20, 21). Our study suggests a window period of 3 to
5 days, and we would not recommend making deci-
sions regarding removing contact precautions or end-
ing quarantine on the basis of results obtained in this
period in the absence of symptoms. Although the false-
negative rate is minimized 1 week after exposure, it re-
mains high at 21%. Possible mechanisms for the high
false-negative rate include variability in individual amount
of viral shedding and sample collection techniques.

One consideration is whether serial testing would
offer any benefit in test performance compared with a
single test. If we assume independence of the test re-

Figure 2. Probability of having a negative RT-PCR test result given SARS-CoV-2 infection (top) and of being infected with
SARS-CoV-2 after a negative RT-PCR test result (bottom), by days since exposure.
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RT-PCR = reverse transcriptase polymerase chain reaction; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.

Figure 3. Posttest probability of SARS-CoV-2 infection after a
negative RT-PCR result, by pretest probability of infection.
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RT-PCR = reverse transcriptase polymerase chain reaction; SARS-CoV-
2 = severe acute respiratory syndrome coronavirus 2.

ORIGINAL RESEARCH False-Negative Rate of RT-PCR–Based SARS-CoV-2 Tests by Time Since Exposure

4 Annals of Internal Medicine Annals.org

Time period False-
negative rate

Day 4 67%

Day 8 20%

Days 5-15 17-30%

Accuracy varies 
between swab 
method, lab, time 
since infection 

P(false 
negative)

P(infected | 
negative)

1 2 3 4 5
DAY



Bayesian meta-analysis of SAR 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• Goal: pool results from SAR studies to estimate mean SAR 
and heterogeneity. 

• Hierarchical Bayesian random effects model (Bayesian meta-
analysis).  

B Hierarchical Model for Literature Estimates

We use the following Bayesian Hierarchical Model:

Data:
Confirmed (C)
Total          (N)

Figure 9: Graphical Model

Data

Ni � number of household contacts considered in each study

Ci � number of confirmed cases

1ARi � indicator; 0 - the study tested asymptomatics, 1 - otherwise

1FNRi � indicator; 0 - the study corrected for false negatives, 1 - otherwise

Priors

FNRi ⇠ Uniform(0.15, 0.35)

AR ⇠ Uniform(0.18, 0.43)

SARi ⇠ Beta(↵, �)

↵, � ⇠ HalfF lat()

Likelihood:

pi := SARi(1 � AR · 1ARi)(1 � FNRi · 1FNRi)

`(Ci|SARi, FNRi, AR) / p
Ci
i

(1 � pi)
Ni�Ci

equivalently:

Ci|SARi, FNRi, AR ⇠ Binomial(Ni, SARi(1 � AR · 1ARi)(1 � FNRi · 1FNRi))

We perform inference via MCMC sampling using PyMC34 with the the built-in NUTS Ho↵man and
Gelman (2014) sampler. We use 4 chains with 6000 iterations each. The burn-in period is 2000.

Figure 10 below contains histograms corresponding to posterior samples of SAR and Rh as well as the
posterior samples of the mean of SAR and Rh respectively.

4https://docs.pymc.io/

22

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2020. .https://doi.org/10.1101/2020.05.23.20111559doi: medRxiv preprint 

B Hierarchical Model for Literature Estimates

We use the following Bayesian Hierarchical Model:

Data:
Confirmed (C)
Total          (N)

Figure 9: Graphical Model

Data

Ni � number of household contacts considered in each study

Ci � number of confirmed cases

1ARi � indicator; 0 - the study tested asymptomatics, 1 - otherwise

1FNRi � indicator; 0 - the study corrected for false negatives, 1 - otherwise

Priors

FNRi ⇠ Uniform(0.15, 0.35)

AR ⇠ Uniform(0.18, 0.43)

SARi ⇠ Beta(↵, �)

↵, � ⇠ HalfF lat()

Likelihood:

pi := SARi(1 � AR · 1ARi)(1 � FNRi · 1FNRi)

`(Ci|SARi, FNRi, AR) / p
Ci
i

(1 � pi)
Ni�Ci

equivalently:

Ci|SARi, FNRi, AR ⇠ Binomial(Ni, SARi(1 � AR · 1ARi)(1 � FNRi · 1FNRi))
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Gelman (2014) sampler. We use 4 chains with 6000 iterations each. The burn-in period is 2000.
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SAR meta-analysis results 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Figure 1: Estimates for secondary attack rate (SAR) and household reproduction number (Rh). Dashed
lines show estimates from the original studies. Solid lines show 95% credible intervals from a Bayesian
hierarchical model, which adjusts estimates for false negatives and asymptomatics where appropriate. In
the left plot the Meta Estimates (orange) are the model’s pooled credible intervals over the mean SAR and
standard deviation of SAR. In the right plot the Meta Estimates refer to the credible intervals over the mean
and standard deviation of Rh. The relatively wide intervals for the mean along with large variance of the
meta estimate of SAR and Rh are due to high variability across studies. If a study has a single asterisk, this
means it was unnecessary to adjust for asymptomatics (only false negatives). The double asterisk means no
adjustment was necessary.

2.2.1 Adjusting SAR literature estimates

For the SAR, we searched PubMed and Google Scholar to find any previous work that estimates the household
SAR from empirical data. We found a total of nine papers. Whenever appropriate, we recalculated the
estimated SAR for each study to correct for the false-negative rate (FNR) of RT-PCR testing and the
proportion of cases that are asymptomatic (denoted “AR”). We used a hierarchical Bayesian random e↵ects
model both for correcting estimates from individual studies and for pooling results to compute a meta-analysis
estimate of the SAR. In the model, the SAR for study i (denoted SARi) is drawn from a Beta distribution and
each study has a false-negative rate FNRi drawn from a prior based on estimates in the literature (Section 2.1).
The proportion of asymptomatics AR is shared across studies and is also drawn from a prior based on existing
literature. The likelihood of a household member testing positive is pi = SARi ⇤ (1 � FNRi) ⇤ (1 � AR) for
studies where only symptomatic contacts were tested. To estimate the household reproduction number Rh

for each study i, we adjust the total number of secondary cases using FNRi and AR and divide by the number
of primary cases. Results are shown in Figure 1 and a full description of the model is found in Appendix B.

2.2.2 Singapore contact tracing data for estimating Rh

Singapore’s Ministry of Health has collected information about COVID-19 cases tracked via contact trac-
ing (Singapore MOH, 2020). UpCode Academy published this data in an interactive dashboard (Singapore
COVID-19 Dashboard, 2020). We extracted associated metadata for each positive case along with a directed
graph providing information about the infection source. This resulted in a case and transmission network
for 6588 patients. Confirmation dates for cases ranged from January, 23rd to April 19th.

We used the data to construct a transmission graph, where nodes correspond to cases and edges to
infections. As terminology, we distinguish source cases (which are the cause of infections) from target cases
(which are infected by sources). We define a cut-o↵ date, such that all infections with confirmation date
prior to the cut-o↵ are labeled as sources. All the nodes that have an incident edge from a source are labeled

4
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Mean and 95% Bayesian 
credible intervals for SAR 
for each study (blue).  
 
In orange, the pooled 
estimate for the mean and 
SD for the distribution 
that generates the SAR. 
Our central pooled 
estimate is mean=30% 
and SD=15%. 



SAR meta-analysis results
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• Posterior mean for SAR is 30% and SD is 15%, which 
shows heterogeneity across studies. 

• Our estimate would increase if FNR above 15-35%. 

• Our estimate would decrease if asymptomatic rate (AR) 
below 20-40%.  

• Our estimate would decrease if asymptomatics are less 
infectious. E.g. If AR=25% and relative infectiousness 
60%, then SAR=30% is adjusted to 27%.  
= 0.75*0.3 + 0.25*0.6*0.3 



Rh meta-analysis results 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Mean and 95% Bayesian 
credible intervals for Rh 
for each study (blue).  
 
In orange, the pooled 
estimate for the mean and 
SD for the distribution 
that generates Rh. Our 
central pooled estimate is 
mean=0.47 and SD= 0.15.  
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Figure 1: Estimates for secondary attack rate (SAR) and household reproduction number (Rh). Dashed
lines show estimates from the original studies. Solid lines show 95% credible intervals from a Bayesian
hierarchical model, which adjusts estimates for false negatives and asymptomatics where appropriate. In
the left plot the Meta Estimates (orange) are the model’s pooled credible intervals over the mean SAR and
standard deviation of SAR. In the right plot the Meta Estimates refer to the credible intervals over the mean
and standard deviation of Rh. The relatively wide intervals for the mean along with large variance of the
meta estimate of SAR and Rh are due to high variability across studies. If a study has a single asterisk, this
means it was unnecessary to adjust for asymptomatics (only false negatives). The double asterisk means no
adjustment was necessary.

2.2.1 Adjusting SAR literature estimates

For the SAR, we searched PubMed and Google Scholar to find any previous work that estimates the household
SAR from empirical data. We found a total of nine papers. Whenever appropriate, we recalculated the
estimated SAR for each study to correct for the false-negative rate (FNR) of RT-PCR testing and the
proportion of cases that are asymptomatic (denoted “AR”). We used a hierarchical Bayesian random e↵ects
model both for correcting estimates from individual studies and for pooling results to compute a meta-analysis
estimate of the SAR. In the model, the SAR for study i (denoted SARi) is drawn from a Beta distribution and
each study has a false-negative rate FNRi drawn from a prior based on estimates in the literature (Section 2.1).
The proportion of asymptomatics AR is shared across studies and is also drawn from a prior based on existing
literature. The likelihood of a household member testing positive is pi = SARi ⇤ (1 � FNRi) ⇤ (1 � AR) for
studies where only symptomatic contacts were tested. To estimate the household reproduction number Rh

for each study i, we adjust the total number of secondary cases using FNRi and AR and divide by the number
of primary cases. Results are shown in Figure 1 and a full description of the model is found in Appendix B.

2.2.2 Singapore contact tracing data for estimating Rh

Singapore’s Ministry of Health has collected information about COVID-19 cases tracked via contact trac-
ing (Singapore MOH, 2020). UpCode Academy published this data in an interactive dashboard (Singapore
COVID-19 Dashboard, 2020). We extracted associated metadata for each positive case along with a directed
graph providing information about the infection source. This resulted in a case and transmission network
for 6588 patients. Confirmation dates for cases ranged from January, 23rd to April 19th.

We used the data to construct a transmission graph, where nodes correspond to cases and edges to
infections. As terminology, we distinguish source cases (which are the cause of infections) from target cases
(which are infected by sources). We define a cut-o↵ date, such that all infections with confirmation date
prior to the cut-o↵ are labeled as sources. All the nodes that have an incident edge from a source are labeled
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Figure 1: Estimates for secondary attack rate (SAR) and household reproduction number (Rh). Dashed
lines show estimates from the original studies. Solid lines show 95% credible intervals from a Bayesian
hierarchical model, which adjusts estimates for false negatives and asymptomatics where appropriate. In
the left plot the Meta Estimates (orange) are the model’s pooled credible intervals over the mean SAR and
standard deviation of SAR. In the right plot the Meta Estimates refer to the credible intervals over the mean
and standard deviation of Rh. The relatively wide intervals for the mean along with large variance of the
meta estimate of SAR and Rh are due to high variability across studies. If a study has a single asterisk, this
means it was unnecessary to adjust for asymptomatics (only false negatives). The double asterisk means no
adjustment was necessary.

2.2.1 Adjusting SAR literature estimates

For the SAR, we searched PubMed and Google Scholar to find any previous work that estimates the household
SAR from empirical data. We found a total of nine papers. Whenever appropriate, we recalculated the
estimated SAR for each study to correct for the false-negative rate (FNR) of RT-PCR testing and the
proportion of cases that are asymptomatic (denoted “AR”). We used a hierarchical Bayesian random e↵ects
model both for correcting estimates from individual studies and for pooling results to compute a meta-analysis
estimate of the SAR. In the model, the SAR for study i (denoted SARi) is drawn from a Beta distribution and
each study has a false-negative rate FNRi drawn from a prior based on estimates in the literature (Section 2.1).
The proportion of asymptomatics AR is shared across studies and is also drawn from a prior based on existing
literature. The likelihood of a household member testing positive is pi = SARi ⇤ (1 � FNRi) ⇤ (1 � AR) for
studies where only symptomatic contacts were tested. To estimate the household reproduction number Rh

for each study i, we adjust the total number of secondary cases using FNRi and AR and divide by the number
of primary cases. Results are shown in Figure 1 and a full description of the model is found in Appendix B.

2.2.2 Singapore contact tracing data for estimating Rh

Singapore’s Ministry of Health has collected information about COVID-19 cases tracked via contact trac-
ing (Singapore MOH, 2020). UpCode Academy published this data in an interactive dashboard (Singapore
COVID-19 Dashboard, 2020). We extracted associated metadata for each positive case along with a directed
graph providing information about the infection source. This resulted in a case and transmission network
for 6588 patients. Confirmation dates for cases ranged from January, 23rd to April 19th.

We used the data to construct a transmission graph, where nodes correspond to cases and edges to
infections. As terminology, we distinguish source cases (which are the cause of infections) from target cases
(which are infected by sources). We define a cut-o↵ date, such that all infections with confirmation date
prior to the cut-o↵ are labeled as sources. All the nodes that have an incident edge from a source are labeled
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Vo’, Italy 
Population: ~3000  
Lavezzo et al. 

Gangelt, Germany 
Population: ~12000  
Streeck et al. 



Results from population sampling

19

Random population testing captures asymptomatics (in primary 
and secondary cases).  

CRI in Gangelt/Vo is consistent 
with our SAR estimate.  
 
This suggests our model and 
the SAR studies (w/ non-random 
testing) are reasonable way to 
estimate SAR.  

Source Quantity Adjusted estimate Notes

Meta-analysis of 9
studies

SAR

Rh

0.30 (0.18-0.43)
0.51 (0.40-0.62)

Central estimate and 95% credible inter-
vals over mean SAR and mean Rh esti-
mate. See Table A.1 for breakdown of each
study and Table 4 for study-level estimates
with and without corrections. See Figure
10 for histograms of posterior samples.

Meta-analysis of 9
studies

sd(SAR)
sd(Rh)

0.17 (0.09-0.27)
0.15 (0.09-0.23)

Central estimate and 95% credible inter-
vals over standard deviation of SAR and
Rh estimate.

Estimates derived from
(Streeck et al., 2020),
Gangelt, Germany

CRI 0.31 Not corrected for AR or FNR as study used
antibody testing.

Our estimate from
Vo’, Italy data

CRI
Rh

0.50
0.37 (0.34-0.40)

Smaller mean household size but older pop-
ulation. CRI for under 50s was 0.24.

Our estimates from
Singapore tracing data

Rh 0.19-0.34 Estimates vary with cut-o↵ date value.

Calculated from
SAR= 0.3

CRI 0.41 Simple theoretical estimate assuming no
outside infection.

Table 1: Estimates of household transmission quantities. Literature estimates were corrected for FNR and
AR, whenever appropriate, and pooled via a hierarchical Bayesian model. Vo’ and Singapore estimates are
based on original analysis of the respective datasets. The Rh range for Singapore is the range of central
estimates for di↵erent cut-o↵ dates. The Rh interval for Vo’ is the confidence intervals derived from normal
approximations. We do not report confidence intervals for CRI.
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10 for histograms of posterior samples.
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Table 1: Estimates of household transmission quantities. Literature estimates were corrected for FNR and
AR, whenever appropriate, and pooled via a hierarchical Bayesian model. Vo’ and Singapore estimates are
based on original analysis of the respective datasets. The Rh range for Singapore is the range of central
estimates for di↵erent cut-o↵ dates. The Rh interval for Vo’ is the confidence intervals derived from normal
approximations. We do not report confidence intervals for CRI.
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Other diseases
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Disease SAR R0

SARS-2 30% 1.4-3.9

SARS-1 8% 0.2-1.1

H1N1 Flu 15% 1.4-1.6

Colds 30-60% 2-3

Measles 70-90% 12-18

https://docs.google.com/document/d/1DpUcZwrz6YA4ucBmS4ITmiL-Jf4ZuiW_3C0NWp55G8Y/edit?usp=sharing


R estimates pre/post-lockdown
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Figure 3: Estimated values of the reproduction number R pre- and post-lockdown in a subset of US states
(top) and other countries (bottom). The growth rate was estimated by fitting an overdispersed Poisson
distribution onto daily death statistics, as described in Yadlowsky et al. (2020). This was translated into
a reproduction number R via the generation time distribution (c.f. (Ferretti et al., 2020)). 95% confidence
intervals are shown.

Figure 4: Left: Reproduction numbers for community transmission (Rc) and intra-household transmission
(Rh) for the regions whose R values are shown in Figure 3. The overlaid contour plot shows level sets of
the overall reproduction number R = Rh + Rc. Right: The estimated share of transmission attributable to
household infections (Rh/R). In both graphs we assume Rh = 0.3 pre-lockdown—to obtain post-lockdown
Rh we multiply by a mobility factor M , obtained from Google’s estimates of average time spent in residential
areas.
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Household vs. total spread
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Figure 3: Estimated values of the reproduction number R pre- and post-lockdown in a subset of US states
(top) and other countries (bottom). The growth rate was estimated by fitting an overdispersed Poisson
distribution onto daily death statistics, as described in Yadlowsky et al. (2020). This was translated into
a reproduction number R via the generation time distribution (c.f. (Ferretti et al., 2020)). 95% confidence
intervals are shown.
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Figure 4: Left: Reproduction numbers for community transmission (Rc) and intra-household transmission
(Rh) for the regions whose R values are shown in Figure 3. The overlaid contour plot shows level sets of
the overall reproduction number R = Rh + Rc. Right: The estimated share of transmission attributable to
household infections (Rh/R). In both graphs we assume Rh = 0.3 pre-lockdown—to obtain post-lockdown
Rh we multiply by a mobility factor M , obtained from Google’s estimates of average time spent in residential
areas.
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• If Rh ~ 0.3 pre-lockdown, then  
Rh /R was 0-25% across US states. 

• After lockdown, Rh /R was 
25-60%.  

• Conclusion: Under social 
distancing, reducing household 
transmission is high impact.  



Singapore dataset
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Singapore published comprehensive contact tracing with some links 
annotated as “family” (proxy for household).  

We turned this into a dataset for inferring Rh .  
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Figure 2: Daily aggregate estimates of e↵ective and household reproduction number in Singapore based on
contact tracing data. We observe that in early phases of the epidemic Reff was greater than 1. With increased
public awareness and contact tracing e↵orts the e↵ective reproduction number has decreased steadily through
March 15th. Throuhout this time household transmission stayed constant, with Rh values in the 0.2 � 0.3
range. The ratio of infections attributable to household decreased sharply at the end of March due to large
outbreaks in migrant worker dormitories. Even though their infections are not annotated as households, this
indicates that co-habitation and proximity play a large role in transmission dynamics.

accurately quantify uncertainty due to heterogeneity in household sizes and di�culties in estimating number
of index cases in the community. (see Table 2 for other FNR values).

Confounds and heterogeneity. We might be concerned that testing decreased the household transmis-
sion due to earlier household isolation, as in (Bi et al., 2020). However, if we restrict to early cases (where
the first household member has symptoms prior to the start of testing), the adjusted CRI is essentially
unchanged at 48%.

Next we might ask about heterogeneity in CRI: perhaps spouses have a very high CRI rate. But among
presumed partners (adult co-habitants in the same ten-year age range), CRI was still only 52%. Possibly
more important is age: CRI is only 24% among individuals under 50 when adjusting for 15% FNR. There is
evidence that younger people have a higher FNR, but even an FNR of 40% would only lead to an adjusted
CRI of 33%.

Each of these subgroup analyses is on only a small number of total cases and so should be interpreted
with caution. In addition, the Vo’ data may overestimate both Rh and the CRI due to an older population,
lack of awareness of infection risk in early February and violation of single index case assumption. In the
other direction, Vo’ has a smaller-than-typical mean household size of 2.1.

7

R and Rh over time in Singapore 



Figure 2: Baseline prior beliefs about R0 and the CFR

Notes. The first diagram displays the distribution of beliefs regarding R0 at baseline. The
second displays the distribution of beliefs regarding CFR at baseline. Participants’ per-
ceived CFR is calculated by multiplying their belief regarding the risk of being hospitalized
conditional on contracting COVID-19 by the risk of dying conditional on being hospital-
ized for COVID-19. Participants can enter any integer between 0 and 100 for the aforemen-
tioned risks. Participants can also enter any integer between 0 and 100 when stating their
beliefs about R0.
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Implications: reducing SAR
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Ask public, “How infectious is SARS-CoV 2?” 

Answer:   
Mean R0=28 in Akesson et al, see right. 
Median R0=10 in Fetzer et al., see bottom right. 
 
It’s likely that people also massively 
overestimate household SAR.  
 
New York Times article on transmission in Italy 
quotes a doctor saying household transmission 
was inevitable.  

Fig. 3 Beliefs About the Coronavirus and Effect of Information on Economic Worries. (A)
and (B) Distribution of beliefs about mortality and contagiousness (R0) of coronavirus. (C) Cor-
relational effect of overestimating mortality and contagiousness relative to official numbers on
worries about the aggregate US economy and personal economic situation. (D) Effect of informa-
tion suggesting high mortality relative to low mortality on beliefs about severity of crisis in the
world and US. (E) Effect of information suggesting high mortality relative to low mortality as well
as information about contagiousness on worries about the aggregate US economy and personal
economic situation. In all panels, error bars indicate 95% confidence intervals.

situation. Respondents in the contagiousness information treatment showed 0.09 stan-

dard deviations lower worries about the effects of the coronavirus on their own personal

economic situation (p = 0.037) and a small decrease in their worries about the aggregate

US economy (0.01 sd, p = 0.790) (Fig 3E and Supplementary Table 7). In sum, the exper-

imental evidence indicates that perceptions about the mortality and the contagiousness

of coronavirus are important causal mechanisms that shape people’s expectations about

the aggregate economy and their personal economic situation.

Finally, to study people’s understanding of the evolution of pandemics, in the sec-

ond wave of the survey we investigated individuals’ mental models about the spread of

diseases and their role in shaping individuals’ economic worries. As humans are orga-

nized in networks, disease spread typically follows a non-linear (e.g. logistic or quasi-

exponential) function, at least in the beginning of an outbreak [16, 17]. Hence, a small

number of cases can rapidly evolve into a widespread pandemic if the contagiousness

8



Can SAR be reduced?
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Our meta-analysis suggest SAR <30% with some NPIs. How much can NPIs help 
reduce SAR? 
 
1. Li et al. find SAR drops to 0% if primary case is strictly isolated at home from 
symptom onset. (n = 14).  
 
2. Wang et al. looked at different NPIs: 

• Regular contact with primary case: 18x higher infection risk, CI = (4,85).  

• Family members wearing mask before onset: 5x lower risk, CI = (1.25, 17) 

• Disinfectant house cleaning daily: 5x lower risk, CI = (1.18, 14). 



Are household transmissions less bad because they stay 
contained? 

Implications: containment

27

?

Person i infected 
outside home 

Then i → j 
inside home.  

Does j infect 
anyone outside 
home? 



Are household transmissions less bad because they stay 
contained? 

• Formally:   
# community infections for people infected at home vs. in 
community.  

• Being infected in home is like perfect contact tracing. 

• If contact tracing is weak and compliance with quarantine is 
high, then containment theory is probably true. 

• Need better contact tracing datasets!  

Rc|h > Rc|c

Implications: containment

28



Lockdown contact patterns
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First release: 29 April 2020  www.sciencemag.org  (Page numbers not final at time of first release) 7 
 

 
  

Fig. 1. Contact matrices by age. (A) Baseline period contact matrix for Wuhan (regular weekday only). Each 
cell of the matrix represents the mean number of contacts that an individual in a given age group has with 
other individuals, stratified by age groups. The color intensity represents the number of contacts. To 
construct the matrix we performed bootstrap sampling with replacement of survey participants weighted by 
the age distribution of the actual population of Wuhan. Every cell of the matrix represents an average over 
100 bootstrapped realizations. (B) Same as (A), but for the outbreak contact matrix for Wuhan.  
(C) Difference between the baseline period contact matrix and the outbreak contact matrix in Wuhan.  
(D) Same as (A), but for Shanghai. (E and F) Same as (B) and (C), but for Shanghai. 
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Age-Age contact matrices for Shanghai before (left) and after (right) 
strict lockdown from Zhang et al. 2020 
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Estimated 
contact patterns 
for the UK 
before 
(POLYMOD) and 
after (CoMix) 
lockdown from 
Jarvis et al 2020.  

 

Figure 2: Contact matrices for all reported contacts made in different settings, 
comparing CoMix to Polymod. 
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1. Assume that secondary attack rate constant across groups 
(not true for households vs work contacts!) 

2. Then entry Cij is proportional to mean infections in group i 
caused by person in group j, which is reproductive number 
for j restricted to i.  

3. How do we “sum over” Cij to get overall reproductive 
number R ? 
A: Find dominant eigenvalue of Cij 

Lockdown contact patterns
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• We used survey data from US to estimate 2x2 contact matrix 
for essential workers (high contact) and everyone else (low 
contact). 

• What is the effect of reducing contact between i and j by 
10%?  

Lockdown contact patterns
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HC 9.3 1.0
LC 4.6 3.0

Figure 5: Contact matrix estimates for the
United States using data from (Rothwell, 2020).
Derivation can be found in the Appendix.
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Figure 6: The e↵ect of reducing each contact
mode by 10% under the simple compartmental
model presented here.

dominant eigenvalue of the contact matrix is a constant multiple of the reproductive number (more pre-
cisely, the contact matrix is a constant multiple of the “next-generation matrix” (Diekmann et al., 1990;
den Driessche and Watmough, 1992), whose dominant eigenvalue is R). We can therefore estimate how
changes in contact a↵ect disease transmission, by looking at how each entry of the contact matrix a↵ects
the dominant eigenvalue (Caswell, 2006; Klepac et al., 2020).

Since the two groups in our model are easily identifiable, policymakers can target interventions to specific
modes of interaction (e.g. by enforcing more stringent physical distancing in the workplace to reduce HC-HC
contact, or providing PPE to workers with public-facing occupations to reduce HC-LC contact). To forecast
the e↵ect of such interventions, we consider the decrease in reproduction number R caused by a 10% decrease
in each type of contact (Figure 6). The results predict that reducing contact between high-contact individuals
will have disproportionate e↵ect on reducing overall transmission. Specifically, our point estimate predicts a
10% reduction in contact between high-contact individuals (HC-HC contact) being 35x more e↵ective than
a 10% reduction in LC-LC contact, and 8x more e↵ective than a 10% reduction in HC-LC contact.

These predictions are based on rather crude parameter estimates, and could be greatly improved by more
direct measurements of contact structures, and by incorporating heterogeneity from other sources (e.g. by
also stratifying the model on age (Jarvis et al., 2020) or contact location (Liu et al., 2020)).
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• SAR has mean=30%  and SD=15%. There is high 
heterogeneity.  

• Average person infects ~0.47 household members. 

• Household is small proportion of transmission pre-
lockdown but large (25-60%) under lockdown.  

• There’s evidence that SAR can be reduced with NPIs 

• Household infections probably not “contained” but are 
less bad than community infections.  

• If there are identifiable groups with much higher contact 
(e.g. essential workers), then focus interventions on them.  

Conclusions

33



• How does spread work in practice? 
— kind of contact; droplets vs. fomites  
— indoors vs outdoors, duration of contact. 
— family house vs. apartments vs. dormitory.  
— superspreaders and overdispersion, can we predict who is a superspreader?  
— NPIs: masks and other PPE, distance, hygiene. 
— how do public’s beliefs influence spread? 
— consider using data from Singapore, Korea.  
— need more data from Western countries. E.g. tracing, CCTV, cellphone. 

• Will the virus mutate into worse or better strain? How should we update prior on lack 
of major mutation so far? Even if mutation is unlikely (<4%), impact would be large.   

• Better analyze the overall impact of new Covid-19 tech: 
— sewage testing or other rapid prevalence testing  
— better symptomatic detection (e.g. use ML or home sensors)  
— better genetic prediction of infectiousness (e.g. superspreader risk) and severity of 
infection 
— treatment that reduces IFR 

Bonus: Open questions outside household transmission
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